JSON-Ausgabe mit enum für die gesteuerte Generierung

Ausgabe eines JSON-formatierten Objekts mit einem Enum-Wert, eine Beschreibung des Objekts und eine Liste der Werte, aus denen ausgewählt werden kann.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

C#

Bevor Sie dieses Beispiel anwenden, folgen Sie den C#-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI C# API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

public async Task<string> GenerateContentWithResponseSchema4(
    string projectId = "your-project-id",
    string location = "us-central1",
    string publisher = "google",
    string model = "gemini-1.5-pro-001")
{

    var predictionServiceClient = new PredictionServiceClientBuilder
    {
        Endpoint = $"{location}-aiplatform.googleapis.com"
    }.Build();

    var responseSchema = new OpenApiSchema
    {
        Type = Type.Array,
        Items = new()
        {
            Type = Type.Object,
            Properties =
            {
                ["to_discard"] = new() { Type = Type.Integer },
                ["subcategory"] = new() { Type = Type.String },
                ["safe_handling"] = new() { Type = Type.Integer },
                ["item_category"] = new()
                {
                    Type = Type.String,
                    Enum =
                    {
                        "clothing",
                        "winter apparel",
                        "specialized apparel",
                        "furniture",
                        "decor",
                        "tableware",
                        "cookware",
                        "toys"
                    }
                },
                ["for_resale"] = new() { Type = Type.Integer },
                ["condition"] = new()
                {
                    Type = Type.String,
                    Enum =
                    {
                        "new in package",
                        "like new",
                        "gently used",
                        "used",
                        "damaged",
                        "soiled"
                    }
                }
            }
        }
    };

    string prompt = @"
        Item description:
        The item is a long winter coat that has many tears all around the seams and is falling apart.
        It has large questionable stains on it.";

    var generateContentRequest = new GenerateContentRequest
    {
        Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
        Contents =
        {
            new Content
            {
                Role = "USER",
                Parts =
                {
                    new Part { Text = prompt }
                }
            }
        },
        GenerationConfig = new GenerationConfig
        {
            ResponseMimeType = "application/json",
            ResponseSchema = responseSchema
        },
    };

    GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

    string responseText = response.Candidates[0].Content.Parts[0].Text;
    Console.WriteLine(responseText);

    return responseText;
}

Go

Bevor Sie dieses Beispiel anwenden, folgen Sie den Go-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Go API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import (
	"context"
	"errors"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
)

// controlledGenerationResponseSchema4 shows how to make sure the generated output
// will always be valid JSON and adhere to a specific schema.
func controlledGenerationResponseSchema4(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-pro-001"
	ctx := context.Background()
	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	model.GenerationConfig.ResponseMIMEType = "application/json"

	// Build an OpenAPI schema, in memory
	model.GenerationConfig.ResponseSchema = &genai.Schema{
		Type: genai.TypeArray,
		Items: &genai.Schema{
			Type: genai.TypeObject,
			Properties: map[string]*genai.Schema{
				"to_discard":    {Type: genai.TypeInteger},
				"subcategory":   {Type: genai.TypeString},
				"safe_handling": {Type: genai.TypeString},
				"item_category": {
					Type: genai.TypeString,
					Enum: []string{
						"clothing",
						"winter apparel",
						"specialized apparel",
						"furniture",
						"decor",
						"tableware",
						"cookware",
						"toys",
					},
				},
				"for_resale": {Type: genai.TypeInteger},
				"condition": {
					Type: genai.TypeString,
					Enum: []string{
						"new in package",
						"like new",
						"gently used",
						"used",
						"damaged",
						"soiled",
					},
				},
			},
		},
	}

	prompt := `
		Item description:
		The item is a long winter coat that has many tears all around the seams and is falling apart.
		It has large questionable stains on it.
	`

	res, err := model.GenerateContent(ctx, genai.Text(prompt))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %v", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprint(w, res.Candidates[0].Content.Parts[0])
	return nil
}

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.api.GenerationConfig;
import com.google.cloud.vertexai.api.Schema;
import com.google.cloud.vertexai.api.Type;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;
import java.util.Arrays;

public class ControlledGenerationSchema4 {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "genai-java-demos";
    String location = "us-central1";
    String modelName = "gemini-1.5-pro-001";

    controlGenerationWithJsonSchema4(projectId, location, modelName);
  }

  // Generate responses that are always valid JSON and comply with a JSON schema
  public static String controlGenerationWithJsonSchema4(
      String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      Schema itemSchema = Schema.newBuilder()
          .setType(Type.OBJECT)
          .putProperties("to_discard", Schema.newBuilder().setType(Type.INTEGER).build())
          .putProperties("subcategory", Schema.newBuilder().setType(Type.STRING).build())
          .putProperties("safe_handling", Schema.newBuilder().setType(Type.INTEGER).build())
          .putProperties("item_category", Schema.newBuilder()
              .setType(Type.STRING)
              .addAllEnum(Arrays.asList(
                  "clothing", "winter apparel", "specialized apparel", "furniture",
                  "decor", "tableware", "cookware", "toys"))
              .build())
          .putProperties("for_resale", Schema.newBuilder().setType(Type.INTEGER).build())
          .putProperties("condition", Schema.newBuilder()
              .setType(Type.STRING)
              .addAllEnum(Arrays.asList(
                  "new in package", "like new", "gently used", "used", "damaged", "soiled"))
              .build())
          .build();

      GenerationConfig generationConfig = GenerationConfig.newBuilder()
          .setResponseMimeType("application/json")
          .setResponseSchema(Schema.newBuilder()
              .setType(Type.ARRAY)
              .setItems(itemSchema)
              .build())
          .build();

      GenerativeModel model = new GenerativeModel(modelName, vertexAI)
          .withGenerationConfig(generationConfig);

      GenerateContentResponse response = model.generateContent(
          "Item description:\n"
              + "The item is a long winter coat that has many tears all around the seams "
              + "and is falling apart.\n"
              + "It has large questionable stains on it."
      );

      String output = ResponseHandler.getText(response);
      System.out.println(output);
      return output;
    }
  }
}

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import vertexai

from vertexai.generative_models import GenerationConfig, GenerativeModel

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

response_schema = {
    "type": "ARRAY",
    "items": {
        "type": "OBJECT",
        "properties": {
            "to_discard": {"type": "INTEGER"},
            "subcategory": {"type": "STRING"},
            "safe_handling": {"type": "INTEGER"},
            "item_category": {
                "type": "STRING",
                "enum": [
                    "clothing",
                    "winter apparel",
                    "specialized apparel",
                    "furniture",
                    "decor",
                    "tableware",
                    "cookware",
                    "toys",
                ],
            },
            "for_resale": {"type": "INTEGER"},
            "condition": {
                "type": "STRING",
                "enum": [
                    "new in package",
                    "like new",
                    "gently used",
                    "used",
                    "damaged",
                    "soiled",
                ],
            },
        },
    },
}

prompt = """
    Item description:
    The item is a long winter coat that has many tears all around the seams and is falling apart.
    It has large questionable stains on it.
"""

model = GenerativeModel("gemini-1.5-pro-002")

response = model.generate_content(
    prompt,
    generation_config=GenerationConfig(
        response_mime_type="application/json", response_schema=response_schema
    ),
)

print(response.text)
# Example response:
# [
#     {
#         "condition": "damaged",
#         "item_category": "clothing",
#         "subcategory": "winter apparel",
#         "to_discard": 123,
#     }
# ]

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud -Produkte finden Sie im Google Cloud Beispielbrowser.