Audiodatei mit Gemini 1.5 Pro transkribieren

In diesem Beispiel wird gezeigt, wie Sie mit einer Audiodatei ein Podcast-Transkript mit Zeitstempeln erstellen. Dieses Beispiel funktioniert nur mit Gemini 1.5 Pro.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

C#

Bevor Sie dieses Beispiel anwenden, folgen Sie den C#-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI C# API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class AudioInputTranscription
{
    public async Task<string> TranscribeAudio(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001")
    {

        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        string prompt = @"Can you transcribe this interview, in the format of timecode, speaker, caption.
Use speaker A, speaker B, etc. to identify speakers.";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt },
                        new Part { FileData = new() { MimeType = "audio/mp3", FileUri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3" } }
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

Go

Bevor Sie dieses Beispiel anwenden, folgen Sie den Go-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Go API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import (
	"context"
	"errors"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// transcribeAudio generates a response into w
func transcribeAudio(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"

	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	// Optional: set an explicit temperature
	model.SetTemperature(0.4)

	// Given an audio file URL, prepare audio file as genai.Part
	img := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("pixel.mp3")),
		FileURI:  "gs://cloud-samples-data/generative-ai/audio/pixel.mp3",
	}

	res, err := model.GenerateContent(ctx, img, genai.Text(`
			Can you transcribe this interview, in the format of timecode, speaker, caption.
			Use speaker A, speaker B, etc. to identify speakers.
	`))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprintf(w, "generated transcript:\n%s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;

public class AudioInputTranscription {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    transcribeAudio(projectId, location, modelName);
  }

  // Analyzes the given audio input.
  public static String transcribeAudio(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String audioUri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3";

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              "Can you transcribe this interview, in the format of timecode, speaker, caption.\n"
                  + "Use speaker A, speaker B, etc. to identify speakers.",
              PartMaker.fromMimeTypeAndData("audio/mp3", audioUri)
          ));

      String output = ResponseHandler.getText(response);
      System.out.println(output);

      return output;
    }
  }
}

Node.js

Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function transcript_audio(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-1.5-flash-001',
  });

  const filePart = {
    file_data: {
      file_uri: 'gs://cloud-samples-data/generative-ai/audio/pixel.mp3',
      mime_type: 'audio/mpeg',
    },
  };
  const textPart = {
    text: `
    Can you transcribe this interview, in the format of timecode, speaker, caption?
    Use speaker A, speaker B, etc. to identify speakers.`,
  };

  const request = {
    contents: [{role: 'user', parts: [filePart, textPart]}],
  };

  const resp = await generativeModel.generateContent(request);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


  import vertexai
  from vertexai.generative_models import GenerativeModel, Part

  # TODO (developer): update project & location
  vertexai.init(project=PROJECT_ID, location="us-central1")

  model = GenerativeModel("gemini-1.5-flash-002")

  prompt = """
  Can you transcribe this interview, in the format of timecode, speaker, caption.
  Use speaker A, speaker B, etc. to identify speakers.
"""

  audio_file_uri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3"
  audio_file = Part.from_uri(audio_file_uri, mime_type="audio/mpeg")

  contents = [audio_file, prompt]

  response = model.generate_content(contents)
  print(response.text)

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.