生成文本嵌入
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
此代码示例演示了如何使用预训练的基础模型嵌入文本。
深入探索
如需查看包含此代码示例的详细文档,请参阅以下内容:
代码示例
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],[],[],[],null,["# Generate text embedding\n\nThis code sample demonstrates how to embed text with a pre-trained, foundational model.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Text embeddings API](/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api)\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from __future__ import annotations\n\n from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel\n\n\n def embed_text() -\u003e list[list[float]]:\n \"\"\"Embeds texts with a pre-trained, foundational model.\n\n Returns:\n A list of lists containing the embedding vectors for each input text\n \"\"\"\n\n # A list of texts to be embedded.\n texts = [\"banana muffins? \", \"banana bread? banana muffins?\"]\n # The dimensionality of the output embeddings.\n dimensionality = 3072\n # The task type for embedding. Check the available tasks in the model's documentation.\n task = \"RETRIEVAL_DOCUMENT\"\n\n model = TextEmbeddingModel.from_pretrained(\"gemini-embedding-001\")\n kwargs = dict(output_dimensionality=dimensionality) if dimensionality else {}\n\n embeddings = []\n # gemini-embedding-001 takes one input at a time\n for text in texts:\n text_input = TextEmbeddingInput(text, task)\n embedding = model.get_embeddings([text_input], **kwargs)\n print(embedding)\n # Example response:\n # [[0.006135190837085247, -0.01462465338408947, 0.004978656303137541, ...]]\n embeddings.append(embedding[0].values)\n\n return embeddings\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]