Los modelos disponibles de MedLM, MedLM-medium y MedLM-large son modelos de base para respuestas a preguntas y resúmenes médicos. Puedes acceder a los modelos con la API de MedLM de Vertex AI En esta página, se proporciona una descripción general de los modelos de MedLM disponibles, las APIs que usas para interactuar con los modelos y formas de personalizar sus comportamientos.
Antes de comenzar
- Consulta Descripción general de los modelos de MediLM para obtener información, incluidas las responsabilidades del cliente, la información regulatoria y las prácticas recomendadas de IA responsable.
Consulta la tarjeta de modelo MedLM para obtener detalles, como el uso previsto, la descripción general de los datos y la información de seguridad de MedLM. Haz clic en el siguiente vínculo para descargar una versión de la tarjeta del modelo de MedLM en formato PDF:
Diseño de instrucciones
Para interactuar con los modelos de MedLM, envía instrucciones de lenguaje natural, también llamadas mensajes, que le indiquen al modelo lo que deseas que genere. Sin embargo, a veces, los LLM pueden comportarse de maneras impredecibles. El diseño de un mensaje es un proceso iterativo de prueba y error que toma tiempo y práctica para dominar el nivel. Para obtener información sobre las estrategias generales de diseño de mensajes, consulta Introducción al diseño de mensajes. Para obtener orientación sobre el diseño de instrucciones específicas para tareas con texto, consulta Diseña instrucciones de texto.
Casos de uso
- Resúmenes: crea una versión más corta de un documento que incorpore la información pertinente del texto original. Por ejemplo, es posible que desees resumir una nota médica en la que se describe una visita ambulatoria y extraer información relevante para datos específicos.
- Respuestas a preguntas: Proporciona respuestas a preguntas en texto. Por ejemplo, es posible que desees generar un plan de nutrición integral y médico con base en las afecciones de los pacientes y las preferencias dietéticas.
Modelos compatibles
medlm-medium
medlm-large
Comenzar
En los siguientes ejemplos, se muestra cómo comenzar a usar la API de MedLM con las siguientes interfaces:
- La API de REST de Vertex AI
- SDK de Vertex AI para Python
- Vertex AI Studio
REST
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
PROJECT_ID
: El ID del proyecto.MEDLM_MODEL
: el modelo de MedLM, ya seamedlm-medium
omedlm-large
.
HTTP method and URL:
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict
Cuerpo JSON de la solicitud:
{ "instances": [ { "content": "Question: What causes you to get ringworm?" } ], "parameters": { "temperature": 0, "maxOutputTokens": 256, "topK": 40, "topP": 0.95 } }
Para enviar tu solicitud, elige una de estas opciones:
curl
Guarda el cuerpo de la solicitud en un archivo llamado request.json
.
Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:
cat > request.json << 'EOF' { "instances": [ { "content": "Question: What causes you to get ringworm?" } ], "parameters": { "temperature": 0, "maxOutputTokens": 256, "topK": 40, "topP": 0.95 } } EOF
Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict"
PowerShell
Guarda el cuerpo de la solicitud en un archivo llamado request.json
.
Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:
@' { "instances": [ { "content": "Question: What causes you to get ringworm?" } ], "parameters": { "temperature": 0, "maxOutputTokens": 256, "topK": 40, "topP": 0.95 } } '@ | Out-File -FilePath request.json -Encoding utf8
Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict" | Select-Object -Expand Content
Python (Colaboratory)
Ejecuta el siguiente código de Python en Colaboratory.
!pip install google-cloud-aiplatform # The following restarts the runtime. import IPython app = IPython.Application.instance() # Note that this will result in a pop-up telling you that the session has # crashed for an unknown reason. This can be safely ignored and you can continue # with the following cells after getting this message. app.kernel.do_shutdown(True)
Ejecuta el siguiente código en tu notebook de Colaboratory. Ingresa el ID del proyecto de Google Cloud cuando se indique. Para encontrar el ID del proyecto, consulta Localiza el ID del proyecto.
from google.colab import auth as google_auth import vertexai from vertexai.preview.language_models import TextGenerationModel google_auth.authenticate_user() # TODO: Replace with project ID from Cloud Console # (https://support.google.com/googleapi/answer/7014113) PROJECT_ID = 'my-project' # MedLM models are only available in us-central1. vertexai.init(project=PROJECT_ID, location='us-central1') parameters = { "candidate_count": 1, "max_output_tokens": 256, "temperature": 0.0, "top_k": 40, "top_p": 0.80, } model_instance = TextGenerationModel.from_pretrained("medlm-medium") response = model_instance.predict( "Question: What causes you to get ringworm?", **parameters ) print(f"Response from Model: {response.text}")
Generative AI Studio
Usa Vertex AI Studio para diseñar, probar y personalizar los mensajes enviados a la API de MedLM. Antes de usar Vertex AI Studio para MedLM, consulta Prueba Vertex AI Studio para conocer los requisitos previos.
Para probar un mensaje de MedLM con Vertex AI Studio en la consola de Google Cloud, haz lo siguiente:
- En la sección Vertex AI de la consola de Google Cloud, ve a la página Vertex AI Studio.
- Haz clic en Comenzar.
- Haz clic en Crear mensaje.
- En el menú Modelo, selecciona
MedLM-Medium
oMedLM-Large
. - En el campo Mensaje, ingresa tu mensaje.
- Puedes ajustar los valores Temperatura y Límite de token para experimentar cómo afectan la respuesta (opcional). Recomendamos usar los valores predeterminados. Si no sabes qué valores usar, usa los valores predeterminados.
- Haz clic en Enviar para generar una respuesta.
- Para guardar un mensaje, haz clic en Guardar (opcional).
- Para ver el código de Python o un comando
curl
para tu mensaje, haz clic en Obtener código (opcional).
Mensajes de búsqueda de respuestas
Las siguientes secciones contienen muestras de búsqueda de respuestas. Cada mensaje de ejemplo incluye los valores de modelo y parámetro recomendados.
Búsqueda de respuestas de formato largo
En los siguientes ejemplos, se muestra cómo la API de MedLM responde una pregunta médica de formato largo formulada como una consulta.
REST
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
PROJECT_ID
: El ID del proyecto.MEDLM_MODEL
: el modelo de MedLM, ya seamedlm-medium
omedlm-large
.
HTTP method and URL:
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict
Cuerpo JSON de la solicitud:
{ "instances": [ { "content": "Question: What causes you to get ringworm?" } ], "parameters": { "temperature": 0, "maxOutputTokens": 256, "topK": 40, "topP": 0.95 } }
Para enviar tu solicitud, elige una de estas opciones:
curl
Guarda el cuerpo de la solicitud en un archivo llamado request.json
.
Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:
cat > request.json << 'EOF' { "instances": [ { "content": "Question: What causes you to get ringworm?" } ], "parameters": { "temperature": 0, "maxOutputTokens": 256, "topK": 40, "topP": 0.95 } } EOF
Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict"
PowerShell
Guarda el cuerpo de la solicitud en un archivo llamado request.json
.
Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:
@' { "instances": [ { "content": "Question: What causes you to get ringworm?" } ], "parameters": { "temperature": 0, "maxOutputTokens": 256, "topK": 40, "topP": 0.95 } } '@ | Out-File -FilePath request.json -Encoding utf8
Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict" | Select-Object -Expand Content
Búsqueda de respuestas de opción múltiple
En los siguientes ejemplos, se muestra cómo la API de MedLM responde una pregunta médica de opción múltiple. El mensaje es el siguiente:
Instructions: This text contains multiple-choice questions about medical knowledge. Solve each question step-by-step, starting by summarizing the available information. Select a single option from the four choices provided as the final answer.
Question 1: Which medication causes the maximum increase in prolactin level?
(A) Risperidone
(B) Clozapine
(C) Olanzapine
(D) Aripiprazole
Explanation: To solve this question, let's refer to authoritative sources. Clozapine generally does not elevate prolactin levels. Atypicals like olanzapine and aripiprazole cause little to no elevation. Risperidone, on the other hand, is known to result in a sustained elevated prolactin level. Therefore, risperidone is likely to cause the maximum increase in prolactin level.
Answer: (A)
Question 2: What is the recommended age for routine screening mammography?
(A) 20 years
(B) 30 years
(C) 40 years
(D) 50 years
Explanation: The age of routine screening may vary depending on the country. In the United States, according to the American Cancer Society, it is recommended to start routine screening mammography at 40 years of age. In Europe, it is typically closer to 50 years. For a patient based in the US, the best answer is 40 years.
Answer: (C)
Question 3: A 65-year-old male experiences severe back pain and paralysis in his left lower limb. Imaging studies show compression of nerve elements at the intervertebral foramen between vertebrae L5 and S1. Which structure is most likely causing this compression?
(A) Anulus fibrosus
(B) Nucleus pulposus
(C) Posterior longitudinal ligament
(D) Anterior longitudinal ligament
Explanation: This man's symptoms and imaging findings are consistent with a herniated intervertebral disk. The soft, gelatinous "nucleus pulposus" is forced out through a weakened part of the disk, resulting in back pain and nerve root irritation. In this case, the impingement is resulting in paralysis, which should be considered a medical emergency. Overall, the structure that is causing the compression and symptoms is the nucleus pulposus.
Answer: (B)
Question 4: Which cells in the lungs are also known as APUD cells?
(A) Dendritic cells
(B) Type I pneumocytes
(C) Type II pneumocytes
(D) Neuroendocrine cells
Explanation: Neuroendocrine cells, also known as Kultschitsky-type cells, Feyrter cells, and APUD cells, are found in the basal layer of the surface epithelium and in the bronchial glands.
Answer: (D)
Question 5: Which microorganism indicates remote contamination of water?
(A) Streptococci
(B) Staphylococci
(C) Clostridium perfringens
(D) Vibrio
Explanation: The presence of Clostridium perfringens in water indicates remote contamination because it is a spore-forming bacterium that can survive in the environment for extended periods of time.
Answer: (C)
REST
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
PROJECT_ID
: El ID del proyecto.MEDLM_MODEL
: el modelo de MedLM, ya seamedlm-medium
omedlm-large
.
HTTP method and URL:
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict
Cuerpo JSON de la solicitud:
{ "instances": [ { "content": "Instructions: The following are multiple choice questions about medical knowledge. Solve them in a step-by-step fashion, starting by summarizing the available information. Output a single option from the four options as the final answer. \n \nQuestion: Maximum increase in prolactin level is caused by: \n(A) Risperidone (B) Clozapine (C) Olanzapine (D) Aripiprazole \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. Clozapine generally does not raise prolactin levels. Atypicals such as olanzapine and aripiprazole cause small if no elevation. Risperidone is known to result in a sustained elevated prolactin level. Therefore risperidone is likely to cause the maximum increase in prolactin level. \nAnswer: (A) \n \nQuestion: What is the age of routine screening mammography? \n(A) 20 years (B) 30 years (C) 40 years (D) 50 years \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. The age of routine screening depends on the country you are interested in and varies widely. For the US, it is 40 years of age according to the American Cancer Society. In Europe, it is typically closer to 50 years. For a patient based in the US, the best answer is 40 years. \nAnswer: (C) \n \nQuestion: A 65-year-old male complains of severe back pain and inability to move his left lower limb. Radiographic studies demonstrate the compression of nerve elements at the intervertebral foramen between vertebrae L5 and S1. Which structure is most likely responsible for this space-occupying lesion? \n(A) Anulus fibrosus (B) Nucleus pulposus (C) Posterior longitudinal ligament (D) Anterior longitudinal ligament \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. This man describes a herniated invertebral disk through a tear in the surrounding annulus fibrosus. The soft, gelatinous \"nucleus pulposus\" is forced out through a weakened part of the disk, resulting in back pain and nerve root irritation. In this case, the impingement is resulting in paralysis, and should be considered a medical emergency. Overall, the structure that is causing the compression and symptoms is the nucleus pulposus. \nAnswer: (B) \n \nQuestion: Neuroendocrine cells in the lungs are: \n(A) Dendritic cells (B) Type I pneumocytes (C) Type II pneumocytes (D) APUD cells \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. Neuroendocrine cells, which are also known as Kultschitsky-type cells, Feyrter cells and APUD cells, are found in the basal layer of the surface epithelium and in the bronchial glands. \nAnswer: (D) \n \nQuestion: Presence of it indicates remote contamination of water \n(A) Streptococci (B) Staphalococci (C) Clastridium pertringes (D) Nibrio \n" } ], "parameters": { "temperature": 0.2, "maxOutputTokens": 256 } }
Para enviar tu solicitud, elige una de estas opciones:
curl
Guarda el cuerpo de la solicitud en un archivo llamado request.json
.
Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:
cat > request.json << 'EOF' { "instances": [ { "content": "Instructions: The following are multiple choice questions about medical knowledge. Solve them in a step-by-step fashion, starting by summarizing the available information. Output a single option from the four options as the final answer. \n \nQuestion: Maximum increase in prolactin level is caused by: \n(A) Risperidone (B) Clozapine (C) Olanzapine (D) Aripiprazole \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. Clozapine generally does not raise prolactin levels. Atypicals such as olanzapine and aripiprazole cause small if no elevation. Risperidone is known to result in a sustained elevated prolactin level. Therefore risperidone is likely to cause the maximum increase in prolactin level. \nAnswer: (A) \n \nQuestion: What is the age of routine screening mammography? \n(A) 20 years (B) 30 years (C) 40 years (D) 50 years \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. The age of routine screening depends on the country you are interested in and varies widely. For the US, it is 40 years of age according to the American Cancer Society. In Europe, it is typically closer to 50 years. For a patient based in the US, the best answer is 40 years. \nAnswer: (C) \n \nQuestion: A 65-year-old male complains of severe back pain and inability to move his left lower limb. Radiographic studies demonstrate the compression of nerve elements at the intervertebral foramen between vertebrae L5 and S1. Which structure is most likely responsible for this space-occupying lesion? \n(A) Anulus fibrosus (B) Nucleus pulposus (C) Posterior longitudinal ligament (D) Anterior longitudinal ligament \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. This man describes a herniated invertebral disk through a tear in the surrounding annulus fibrosus. The soft, gelatinous \"nucleus pulposus\" is forced out through a weakened part of the disk, resulting in back pain and nerve root irritation. In this case, the impingement is resulting in paralysis, and should be considered a medical emergency. Overall, the structure that is causing the compression and symptoms is the nucleus pulposus. \nAnswer: (B) \n \nQuestion: Neuroendocrine cells in the lungs are: \n(A) Dendritic cells (B) Type I pneumocytes (C) Type II pneumocytes (D) APUD cells \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. Neuroendocrine cells, which are also known as Kultschitsky-type cells, Feyrter cells and APUD cells, are found in the basal layer of the surface epithelium and in the bronchial glands. \nAnswer: (D) \n \nQuestion: Presence of it indicates remote contamination of water \n(A) Streptococci (B) Staphalococci (C) Clastridium pertringes (D) Nibrio \n" } ], "parameters": { "temperature": 0.2, "maxOutputTokens": 256 } } EOF
Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict"
PowerShell
Guarda el cuerpo de la solicitud en un archivo llamado request.json
.
Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:
@' { "instances": [ { "content": "Instructions: The following are multiple choice questions about medical knowledge. Solve them in a step-by-step fashion, starting by summarizing the available information. Output a single option from the four options as the final answer. \n \nQuestion: Maximum increase in prolactin level is caused by: \n(A) Risperidone (B) Clozapine (C) Olanzapine (D) Aripiprazole \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. Clozapine generally does not raise prolactin levels. Atypicals such as olanzapine and aripiprazole cause small if no elevation. Risperidone is known to result in a sustained elevated prolactin level. Therefore risperidone is likely to cause the maximum increase in prolactin level. \nAnswer: (A) \n \nQuestion: What is the age of routine screening mammography? \n(A) 20 years (B) 30 years (C) 40 years (D) 50 years \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. The age of routine screening depends on the country you are interested in and varies widely. For the US, it is 40 years of age according to the American Cancer Society. In Europe, it is typically closer to 50 years. For a patient based in the US, the best answer is 40 years. \nAnswer: (C) \n \nQuestion: A 65-year-old male complains of severe back pain and inability to move his left lower limb. Radiographic studies demonstrate the compression of nerve elements at the intervertebral foramen between vertebrae L5 and S1. Which structure is most likely responsible for this space-occupying lesion? \n(A) Anulus fibrosus (B) Nucleus pulposus (C) Posterior longitudinal ligament (D) Anterior longitudinal ligament \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. This man describes a herniated invertebral disk through a tear in the surrounding annulus fibrosus. The soft, gelatinous \"nucleus pulposus\" is forced out through a weakened part of the disk, resulting in back pain and nerve root irritation. In this case, the impingement is resulting in paralysis, and should be considered a medical emergency. Overall, the structure that is causing the compression and symptoms is the nucleus pulposus. \nAnswer: (B) \n \nQuestion: Neuroendocrine cells in the lungs are: \n(A) Dendritic cells (B) Type I pneumocytes (C) Type II pneumocytes (D) APUD cells \nExplanation: Let's solve this step-by-step, referring to authoritative sources as needed. Neuroendocrine cells, which are also known as Kultschitsky-type cells, Feyrter cells and APUD cells, are found in the basal layer of the surface epithelium and in the bronchial glands. \nAnswer: (D) \n \nQuestion: Presence of it indicates remote contamination of water \n(A) Streptococci (B) Staphalococci (C) Clastridium pertringes (D) Nibrio \n" } ], "parameters": { "temperature": 0.2, "maxOutputTokens": 256 } } '@ | Out-File -FilePath request.json -Encoding utf8
Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict" | Select-Object -Expand Content
Instrucciones de resumen
En las siguientes secciones, se incluyen ejemplos de mensajes de resumen. Cada mensaje de ejemplo incluye los valores de modelo y parámetro recomendados.
Redacta un resumen después de la visita
En los siguientes ejemplos, se muestra cómo generar un resumen después de la visita para un paciente en función de una nota de visita ambulatoria. El mensaje contiene lo siguiente:
- Un preámbulo que contiene la instrucción del modelo.
- Una descripción de cada campo que se extraerá para el resumen.
El formato del resumen después de la visita se basa en Sieferd y otros. (2019) y recomendaciones de la UK Academy of Medical Royal Colleges. De forma opcional, puedes agregar ejemplos limitados antes de las notas y los resúmenes.
El mensaje es el siguiente:
Please read through the provided medical note describing an outpatient visit and extract the relevant information for each of the following 12 fields: - Patient name/age/gender: This should summarize the patient's name, age and gender. It should use the format: "[Patient name], [age] year old [gender]". If the name is not mentioned in the note, please answer "Not available". - Today I was seen by: This field should provide the name of the provider. If the provider seen for the note being summarized is not mentioned, please answer "Not available". - I came in today for: This field should indicate the chief complaint or complaints that caused the visit. - New health issues identified today are: This field should indicate any new diagnoses or other issues identified as a result of the visit being summarized. If the issue is a pre-existing condition identified in the past, please answer "No new diagnosis". - Other health issues I have are: This field should indicate any pre-existing health issues identified in notes. - Today we accomplished: This field should summarize the main topics of discussion and results of any procedures performed during the current visit. The summary could be a short list of procedures, or could be a text description of the patient's experience. Please be as brief as possible when providing details, such as test results or medication names. Describing the experience from the patient's point of view, using phrases like "my visit", "my condition". - My important numbers: This field should provide the results of any measurements relevant to the visit, including vitals. Provide the results of any numeric measurements relevant to the visit, including vitals, laboratory studies, or pain scores. Please include the numbers that should be monitored. Do not fabricate numbers that are not presented in the note. - Changes to my medications are: This field should specify any medications that were added, for which the doses were updated, or which are no longer needed after the visit. Please specify both newly added and stopped medications when possible. If no changes are apparent from the note, please answer "no changes". - Other medications I have are: If the note indicates any existing medications for the patient that the patient should continue taking without changes, list them here. If no medications are indicated in the note, please "Not specified". - My next steps are: This field should document the patient's next steps, including any actions they should take, test results they should expect, and follow-up visits they should schedule, along with the appropriate time frames for each. - I should seek immediate medical attention if: If the note specifies any conditions for which the patient should immediately seek care, specify it here. Be sure to only include conditions that are mentioned in the note. If no conditions are mentioned, write "Not specified". - Other comments from my provider: This is an optional extra field that captures any additional relevant information the provider indicated in the notes that it would be useful for the patient to know. Do not include information that is already listed in the previous field. For each field, write at a sixth-grade reading level and avoid using abbreviations or jargon. Output the summary in the following format: - Patient name/age/gender: - Today I was seen by: - I came in today for: - New health issues identified today are: - Other health issues I have are: - Today we accomplished: - My important numbers: - Changes to my medications are: - Other medications I have are: - My next steps are: - I should seek immediate medical attention if: - Other comments from my provider: Note: INPUT_NOTE After Visit Summary:
REST
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
PROJECT_ID
: El ID del proyecto.MEDLM_MODEL
: el modelo de MedLM, ya seamedlm-medium
omedlm-large
.INPUT_NOTE
: la nota de entrada que se resumirá.
Método HTTP y URL:
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict
Cuerpo JSON de la solicitud:
{ "instances": [ { "content": "Please read through the provided medical note describing an outpatient visit and extract the relevant information for each of the following 12 fields:\n\n- Patient name/age/gender: This should summarize the patient\u2019s name, age and gender. It should use the format: '[Patient name], [age] year old [gender]'. If the name is not mentioned in the note, please answer \"Not available\".\n- Today I was seen by: This field should provide the name of the provider. If the provider seen for the note being summarized is not mentioned, please answer 'Not available'.\n- I came in today for: This field should indicate the chief complaint or complaints that caused the visit.\n- New health issues identified today are: This field should indicate any new diagnoses or other issues identified as a result of the visit being summarized. If the issue is a pre-existing condition identified in the past, please answer 'No new diagnosis'.\n- Other health issues I have are: This field should indicate any pre-existing health issues identified in notes.\n- Today we accomplished: This field should summarize the main topics of discussion and results of any procedures performed during the current visit. The summary could be a short list of procedures, or could be a text description of the patient\u2019s experience. Please be as brief as possible when providing details, such as test results or medication names. Describing the experience from the patient\u2019s point of view, using phrases like 'my visit', 'my condition'.\n- My important numbers: This field should provide the results of any measurements relevant to the visit, including vitals. Provide the results of any numeric measurements relevant to the visit, including vitals, laboratory studies, or pain scores. Please include the numbers that should be monitored. Do not fabricate numbers that are not presented in the note.\n\n\n\n\n\n\n\n\n- Changes to my medications are: This field should specify any medications that were added, for which the doses were updated, or which are no longer needed after the visit. Please specify both newly added and stopped medications when possible. If no changes are apparent from the note, please answer 'no changes'.\n- Other medications I have are: If the note indicates any existing medications for the patient that the patient should continue taking without changes, list them here. If no medications are indicated in the note, please 'Not specified'.\n- My next steps are: This field should document the patient\u2019s next steps, including any actions they should take, test results they should expect, and follow-up visits they should schedule, along with the appropriate time frames for each.\n- I should seek immediate medical attention if: If the note specifies any conditions for which the patient should immediately seek care, specify it here. Be sure to only include conditions that are mentioned in the note. If no conditions are mentioned, write 'Not specified'.\n- Other comments from my provider: This is an optional extra field that captures any additional relevant information the provider indicated in the notes that it would be useful for the patient to know. Do not include information that is already listed in the previous field.\nFor each field, write at a sixth-grade reading level and avoid using abbreviations or jargon.\n\nOutput the summary in the following format:\n- Patient name/age/gender:\n- Today I was seen by:\n- I came in today for:\n- New health issues identified today are:\n- Other health issues I have are:\n- Today we accomplished:\n- My important numbers:\n- Changes to my medications are:\n- Other medications I have are:\n- My next steps are:\n- I should seek immediate medical attention if:\n- Other comments from my provider:\n\n Note:\n\n INPUT_NOTE \n\nAfter Visit Summary:" } ], "parameters": { "candidate_count": 1, "temperature": 0, "maxOutputTokens": 1024, "topK": 40, "topP": 0.80 } }
Para enviar tu solicitud, elige una de estas opciones:
curl
Guarda el cuerpo de la solicitud en un archivo llamado request.json
.
Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:
cat > request.json << 'EOF' { "instances": [ { "content": "Please read through the provided medical note describing an outpatient visit and extract the relevant information for each of the following 12 fields:\n\n- Patient name/age/gender: This should summarize the patient\u2019s name, age and gender. It should use the format: '[Patient name], [age] year old [gender]'. If the name is not mentioned in the note, please answer \"Not available\".\n- Today I was seen by: This field should provide the name of the provider. If the provider seen for the note being summarized is not mentioned, please answer 'Not available'.\n- I came in today for: This field should indicate the chief complaint or complaints that caused the visit.\n- New health issues identified today are: This field should indicate any new diagnoses or other issues identified as a result of the visit being summarized. If the issue is a pre-existing condition identified in the past, please answer 'No new diagnosis'.\n- Other health issues I have are: This field should indicate any pre-existing health issues identified in notes.\n- Today we accomplished: This field should summarize the main topics of discussion and results of any procedures performed during the current visit. The summary could be a short list of procedures, or could be a text description of the patient\u2019s experience. Please be as brief as possible when providing details, such as test results or medication names. Describing the experience from the patient\u2019s point of view, using phrases like 'my visit', 'my condition'.\n- My important numbers: This field should provide the results of any measurements relevant to the visit, including vitals. Provide the results of any numeric measurements relevant to the visit, including vitals, laboratory studies, or pain scores. Please include the numbers that should be monitored. Do not fabricate numbers that are not presented in the note.\n\n\n\n\n\n\n\n\n- Changes to my medications are: This field should specify any medications that were added, for which the doses were updated, or which are no longer needed after the visit. Please specify both newly added and stopped medications when possible. If no changes are apparent from the note, please answer 'no changes'.\n- Other medications I have are: If the note indicates any existing medications for the patient that the patient should continue taking without changes, list them here. If no medications are indicated in the note, please 'Not specified'.\n- My next steps are: This field should document the patient\u2019s next steps, including any actions they should take, test results they should expect, and follow-up visits they should schedule, along with the appropriate time frames for each.\n- I should seek immediate medical attention if: If the note specifies any conditions for which the patient should immediately seek care, specify it here. Be sure to only include conditions that are mentioned in the note. If no conditions are mentioned, write 'Not specified'.\n- Other comments from my provider: This is an optional extra field that captures any additional relevant information the provider indicated in the notes that it would be useful for the patient to know. Do not include information that is already listed in the previous field.\nFor each field, write at a sixth-grade reading level and avoid using abbreviations or jargon.\n\nOutput the summary in the following format:\n- Patient name/age/gender:\n- Today I was seen by:\n- I came in today for:\n- New health issues identified today are:\n- Other health issues I have are:\n- Today we accomplished:\n- My important numbers:\n- Changes to my medications are:\n- Other medications I have are:\n- My next steps are:\n- I should seek immediate medical attention if:\n- Other comments from my provider:\n\n Note:\n\n INPUT_NOTE \n\nAfter Visit Summary:" } ], "parameters": { "candidate_count": 1, "temperature": 0, "maxOutputTokens": 1024, "topK": 40, "topP": 0.80 } } EOF
Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict"
PowerShell
Guarda el cuerpo de la solicitud en un archivo llamado request.json
.
Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:
@' { "instances": [ { "content": "Please read through the provided medical note describing an outpatient visit and extract the relevant information for each of the following 12 fields:\n\n- Patient name/age/gender: This should summarize the patient\u2019s name, age and gender. It should use the format: '[Patient name], [age] year old [gender]'. If the name is not mentioned in the note, please answer \"Not available\".\n- Today I was seen by: This field should provide the name of the provider. If the provider seen for the note being summarized is not mentioned, please answer 'Not available'.\n- I came in today for: This field should indicate the chief complaint or complaints that caused the visit.\n- New health issues identified today are: This field should indicate any new diagnoses or other issues identified as a result of the visit being summarized. If the issue is a pre-existing condition identified in the past, please answer 'No new diagnosis'.\n- Other health issues I have are: This field should indicate any pre-existing health issues identified in notes.\n- Today we accomplished: This field should summarize the main topics of discussion and results of any procedures performed during the current visit. The summary could be a short list of procedures, or could be a text description of the patient\u2019s experience. Please be as brief as possible when providing details, such as test results or medication names. Describing the experience from the patient\u2019s point of view, using phrases like 'my visit', 'my condition'.\n- My important numbers: This field should provide the results of any measurements relevant to the visit, including vitals. Provide the results of any numeric measurements relevant to the visit, including vitals, laboratory studies, or pain scores. Please include the numbers that should be monitored. Do not fabricate numbers that are not presented in the note.\n\n\n\n\n\n\n\n\n- Changes to my medications are: This field should specify any medications that were added, for which the doses were updated, or which are no longer needed after the visit. Please specify both newly added and stopped medications when possible. If no changes are apparent from the note, please answer 'no changes'.\n- Other medications I have are: If the note indicates any existing medications for the patient that the patient should continue taking without changes, list them here. If no medications are indicated in the note, please 'Not specified'.\n- My next steps are: This field should document the patient\u2019s next steps, including any actions they should take, test results they should expect, and follow-up visits they should schedule, along with the appropriate time frames for each.\n- I should seek immediate medical attention if: If the note specifies any conditions for which the patient should immediately seek care, specify it here. Be sure to only include conditions that are mentioned in the note. If no conditions are mentioned, write 'Not specified'.\n- Other comments from my provider: This is an optional extra field that captures any additional relevant information the provider indicated in the notes that it would be useful for the patient to know. Do not include information that is already listed in the previous field.\nFor each field, write at a sixth-grade reading level and avoid using abbreviations or jargon.\n\nOutput the summary in the following format:\n- Patient name/age/gender:\n- Today I was seen by:\n- I came in today for:\n- New health issues identified today are:\n- Other health issues I have are:\n- Today we accomplished:\n- My important numbers:\n- Changes to my medications are:\n- Other medications I have are:\n- My next steps are:\n- I should seek immediate medical attention if:\n- Other comments from my provider:\n\n Note:\n\n INPUT_NOTE \n\nAfter Visit Summary:" } ], "parameters": { "candidate_count": 1, "temperature": 0, "maxOutputTokens": 1024, "topK": 40, "topP": 0.80 } } '@ | Out-File -FilePath request.json -Encoding utf8
Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict" | Select-Object -Expand Content
Redacta una historia y un nota de examen físico (H&P) a partir de una transcripción
En los siguientes ejemplos, se muestra cómo acelerar la documentación clínica a través del envío de una solicitud a la API de MedLM para escribir un borrador de historia y un examen físico (H&P) a partir de la transcripción de una conversación médica entre un proveedor y un paciente. .
La nota de H&P es una nota clínica completa que documenta los antecedentes médicos del paciente y el examen físico que realizó el proveedor. MedLM puede recopilar gran parte de la información clínica necesaria para redactar una nota de la conversación entre el proveedor y el paciente durante la visita médica.
Supongamos que tienes una transcripción de una conversación médica en el siguiente formato. Los interlocutores en la conversación son conocidos:
PROVIDER: Welcome! How can we help you this morning?
PATIENT: I think I hurt my ankle while playing football last night. Now even walking hurts.
PROVIDER: I am sorry to hear that. Can you tell me how it happened?
PATIENT: I was playing soccer last night and I think I trip and twisted my ankle.
PROVIDER: Did it start hurting right away? Did you try anything to alleviate the pain?
PATIENT: It got worse last night. I took some ibuprofen, but it really didn't help.
REST
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
PROJECT_ID
: El ID del proyecto.MEDLM_MODEL
: el modelo de MedLM, ya seamedlm-medium
omedlm-large
.
HTTP method and URL:
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict
Cuerpo JSON de la solicitud:
{ "instances": [ { "content": "You are charting a patient record. Read through the provided transcript of a conversation between a healthcare provider and a patient and write a history and physical examination note.\n\nTranscript: \n PROVIDER: Welcome! How can we help you this morning?\nPATIENT: I think I hurt my ankle while playing football last night. Now even walking hurts.\nPROVIDER: I am sorry to hear that. Can you tell me how it happened?\nPATIENT: I was playing soccer last night and I think I trip and twisted my ankle.\nPROVIDER: Did it start hurting right away? Did you try anything to alleviate the pain?\nPATIENT: It got worse last night. I took some ibuprofen, but it really didn't help.\n\nHistory and Physical Note:" } ], "parameters": { "candidate_count": 1, "temperature": 0, "maxOutputTokens": 1024, "topK": 40, "topP": 0.80 } }
Para enviar tu solicitud, elige una de estas opciones:
curl
Guarda el cuerpo de la solicitud en un archivo llamado request.json
.
Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:
cat > request.json << 'EOF' { "instances": [ { "content": "You are charting a patient record. Read through the provided transcript of a conversation between a healthcare provider and a patient and write a history and physical examination note.\n\nTranscript: \n PROVIDER: Welcome! How can we help you this morning?\nPATIENT: I think I hurt my ankle while playing football last night. Now even walking hurts.\nPROVIDER: I am sorry to hear that. Can you tell me how it happened?\nPATIENT: I was playing soccer last night and I think I trip and twisted my ankle.\nPROVIDER: Did it start hurting right away? Did you try anything to alleviate the pain?\nPATIENT: It got worse last night. I took some ibuprofen, but it really didn't help.\n\nHistory and Physical Note:" } ], "parameters": { "candidate_count": 1, "temperature": 0, "maxOutputTokens": 1024, "topK": 40, "topP": 0.80 } } EOF
Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict"
PowerShell
Guarda el cuerpo de la solicitud en un archivo llamado request.json
.
Ejecuta el comando siguiente en la terminal para crear o reemplazar este archivo en el directorio actual:
@' { "instances": [ { "content": "You are charting a patient record. Read through the provided transcript of a conversation between a healthcare provider and a patient and write a history and physical examination note.\n\nTranscript: \n PROVIDER: Welcome! How can we help you this morning?\nPATIENT: I think I hurt my ankle while playing football last night. Now even walking hurts.\nPROVIDER: I am sorry to hear that. Can you tell me how it happened?\nPATIENT: I was playing soccer last night and I think I trip and twisted my ankle.\nPROVIDER: Did it start hurting right away? Did you try anything to alleviate the pain?\nPATIENT: It got worse last night. I took some ibuprofen, but it really didn't help.\n\nHistory and Physical Note:" } ], "parameters": { "candidate_count": 1, "temperature": 0, "maxOutputTokens": 1024, "topK": 40, "topP": 0.80 } } '@ | Out-File -FilePath request.json -Encoding utf8
Luego, ejecuta el siguiente comando para enviar tu solicitud de REST:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/MEDLM_MODEL:predict" | Select-Object -Expand Content
Python (Colaboratory)
Ejecuta el siguiente código de Python en Colaboratory.
!pip install google-cloud-aiplatform # The following restarts the runtime. import IPython app = IPython.Application.instance() # Note that this will result in a pop-up telling you that the session has # crashed for an unknown reason. This can be safely ignored and you can continue # with the following cells after getting this message. app.kernel.do_shutdown(True)
Ejecuta el siguiente código en tu notebook de Colaboratory. Ingresa el ID del proyecto de Google Cloud cuando se indique. Para encontrar el ID del proyecto, consulta Localiza el ID del proyecto.
Ingresa la transcripción médica cuando se indique.
from google.colab import auth as google_auth import vertexai from vertexai.preview.language_models import TextGenerationModel google_auth.authenticate_user() # TODO: Replace with project ID from Cloud Console # (https://support.google.com/googleapi/answer/7014113) PROJECT_ID = 'my-project' # MedLM models are only available in us-central1. vertexai.init(project=PROJECT_ID, location='us-central1') # TODO: Replace with transcript. transcript = """ # TODO: Replace with transcript. """ note_generation_prompt = f"""\ You are charting a patient record. Read through the provided transcript of a conversation between a healthcare provider and a patient and write a history and physical examination note. Transcript: {transcript} History and Physical note: """ parameters = { "candidate_count": 1, "max_output_tokens": 1024, "temperature": 0.0, "top_p": 0.80, "top_k": 40 } model_instance = TextGenerationModel.from_pretrained("medlm-medium") response = model_instance.predict( note_generation_prompt, **parameters ) note = response.text
Ten en cuenta lo siguiente:
- Es posible que la nota generada tenga errores y un médico debe revisarla antes de la aprobación.
- Es posible que la nota generada no cumpla de manera estricta con el formato o la plantilla requerida del departamento clínico o la especialidad. Está diseñada como punto de partida para graficar al paciente.
- La exactitud de la transcripción proporcionada limita la calidad de la nota que se genera.
Implementa evaluaciones y mitigaciones centradas en la equidad
MedLM puede producir resultados menos precisos para algunos grupos en comparación con otros según la pregunta y su frase. Los diferentes rendimientos de los resultados del modelo en los diferentes grupos demográficos tienen el potencial de exacerbar las desigualdades en la salud y perpetuar sesgos perjudiciales. Estas inexactitudes de resultados no son exclusivas de MedLM y, a menudo, son el resultado de varios factores, como las desigualdades sociales y estructurales, los conceptos erróneos médicos, los estereotipos negativos y la falta de diversidad en el entrenamiento de los datos.
Considera implementar evaluaciones y mitigaciones centradas en la equidad. Se incluyen las siguientes:
- Evaluar el rendimiento y el comportamiento del modelo para casos de uso previstos en varias poblaciones (como raza y origen étnico, estado socioeconómico [SES], geografía, identidad de género, orientación sexual, edad, preferencia de idioma, raza, etcétera).
- Obtener comentarios sobre el rendimiento
- Interactúa con expertos interdisciplinarios y socios externos que se especializan en definir y abordar los aspectos sociales y estructurales de la salud.
- Realizar esfuerzos de supervisión continua para evaluar y abordar los problemas de sesgo.
Según tu caso de uso, considera aumentar tu instrucción con instrucciones centradas en la equidad, lo que puede mejorar la calidad de los resultados de MedLM con respecto al sesgo y la equidad.
Por ejemplo, el siguiente texto, cuando se coloca al comienzo de una instrucción, mejora la calidad de los resultados en las preguntas de medicina basadas en la carrera, como se muestra en Omiye et al. (2023):
You are a medical knowledge assistant who provides useful, complete, and
scientifically-grounded answers to queries. Your answers are unbiased and
up-to-date, and you follow the latest clinical guidelines. You are aware that
guidelines may have changed recently in order to address bias and inaccurate
information about disadvantaged groups. You are committed to providing the best
possible care to all patients, regardless of their race, gender, or
geographical location. You are always learning and growing, and you are open to
feedback. Only account for race, gender, or geographical location in your
answer if you are 100% sure it is correct and unbiased, with no possibility of
making a mistake or providing a response based on outdated guidelines.
El cambio de mensajes influye en los resultados del modelo, por lo que se recomiendan las evaluaciones completas para garantizar que otras áreas de rendimiento no se vean afectadas.
Consulta la tarjeta del modelo de MedLM para obtener consideraciones adicionales sobre el rendimiento del modelo.