Menguji prompt chat

Dengan Vertex AI, Anda dapat menggunakan Vertex AI Studio untuk menguji prompt di konsol Google Cloud, Vertex AI API, dan Vertex AI SDK untuk Python. Halaman ini menunjukkan cara menguji prompt chat menggunakan salah satu antarmuka tersebut.

Untuk mempelajari lebih lanjut cara mendesain prompt chat, lihat Prompt chat.

Menguji prompt chat

Untuk menguji prompt chat, pilih salah satu metode berikut.

REST

Untuk menguji prompt teks menggunakan Vertex AI API, kirim permintaan POST ke endpoint model penayang.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • PROJECT_ID: Project ID Anda.
  • CONTEXT: Opsional. Konteks dapat berupa instruksi yang Anda berikan kepada model mengenai cara model harus merespons atau informasi yang digunakan atau dijadikan referensinya untuk menghasilkan respons. Tambahkan informasi kontekstual pada prompt Anda jika perlu memberikan informasi pada model, atau batasi batasan respons hanya untuk apa yang ada dalam konteksnya.
  • Contoh opsional: Contohnya adalah daftar pesan terstruktur untuk model guna mempelajari cara merespons percakapan.
    • EXAMPLE_INPUT: Contoh pesan.
    • EXAMPLE_OUTPUT: Contoh respons yang ideal.
  • Pesan: Histori percakapan yang diberikan untuk model dalam formulir penulis alternatif yang terstruktur. Pesan muncul dalam urutan kronologis: terlama dulu, terbaru terakhir. Jika histori pesan menyebabkan input melebihi panjang maksimum, pesan terlama akan dihapus hingga seluruh prompt berada dalam batas yang diizinkan. Harus ada jumlah pesan ganjil (pasangan AUTHOR-CONTENT) agar model dapat menghasilkan respons.
    • AUTHOR: Penulis pesan.
    • CONTENT: Konten pesan.
  • TEMPERATURE: Suhu digunakan untuk pengambilan sampel selama pembuatan respons, yang terjadi saat topP dan topK diterapkan. Suhu mengontrol tingkat keacakan dalam pemilihan token. Suhu yang lebih rendah cocok untuk perintah yang memerlukan respons yang kurang terbuka atau kreatif, sedangkan suhu yang lebih tinggi dapat memberikan hasil yang lebih beragam atau kreatif. Suhu 0 berarti token probabilitas tertinggi selalu dipilih. Dalam hal ini, respons untuk permintaan tertentu sebagian besar deterministik, tetapi sedikit variasi masih dapat dilakukan.

    Jika model menampilkan respons yang terlalu umum, terlalu pendek, atau model memberikan respons penggantian, coba tingkatkan suhu.

  • MAX_OUTPUT_TOKENS: Jumlah maksimum token yang dapat dibuat dalam respons. Token terdiri dari sekitar empat karakter. 100 token setara dengan sekitar 60-80 kata.

    Tentukan nilai yang lebih rendah untuk respons yang lebih pendek dan nilai yang lebih tinggi untuk respons yang berpotensi lebih lama.

  • TOP_P: Top-P mengubah cara model memilih token untuk output. Token dipilih dari yang paling mungkin (lihat top-K) hingga yang paling tidak mungkin sampai jumlah probabilitasnya sama dengan nilai top-P. Misalnya, jika token A, B, dan C memiliki probabilitas 0,3, 0,2, dan 0,1 dengan nilai top-P adalah 0.5, model akan memilih A atau B sebagai token berikutnya dengan menggunakan suhu dan mengecualikan C sebagai kandidat.

    Tentukan nilai yang lebih rendah untuk respons acak yang lebih sedikit dan nilai yang lebih tinggi untuk respons acak yang lebih banyak.

  • TOP_K: Top-K mengubah cara model memilih token untuk output. Top-K dari 1 berarti token yang dipilih berikutnya adalah yang paling mungkin di antara semua token dalam kosakata model (juga disebut decoding greedy), sedangkan nilai top-K dari 3 berarti token berikutnya dipilih di antara tiga token yang paling mungkin menggunakan suhu.

    Untuk setiap langkah pemilihan token, token top-K dengan probabilitas tertinggi akan diambil sampelnya. Kemudian token akan difilter lebih lanjut berdasarkan top-P dengan token akhir yang dipilih menggunakan pengambilan sampel suhu.

    Tentukan nilai yang lebih rendah untuk respons acak yang lebih sedikit dan nilai yang lebih tinggi untuk respons acak yang lebih banyak.

Metode HTTP dan URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/chat-bison:predict

Isi JSON permintaan:

{
  "instances": [{
      "context":  "CONTEXT",
      "examples": [
       {
          "input": {"content": "EXAMPLE_INPUT"},
          "output": {"content": "EXAMPLE_OUTPUT"}
       }],
      "messages": [
       {
          "author": "AUTHOR",
          "content": "CONTENT",
       }],
   }],
  "parameters": {
    "temperature": TEMPERATURE,
    "maxOutputTokens": MAX_OUTPUT_TOKENS,
    "topP": TOP_P,
    "topK": TOP_K
  }
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/chat-bison:predict"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/chat-bison:predict" | Select-Object -Expand Content

Anda akan melihat respons JSON yang mirip seperti berikut:

Contoh perintah curl

MODEL_ID="chat-bison"
PROJECT_ID=PROJECT_ID

curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/${MODEL_ID}:predict -d \
'{
  "instances": [{
      "context":  "My name is Ned. You are my personal assistant. My favorite movies are Lord of the Rings and Hobbit.",
      "examples": [ {
          "input": {"content": "Who do you work for?"},
          "output": {"content": "I work for Ned."}
       },
       {
          "input": {"content": "What do I like?"},
          "output": {"content": "Ned likes watching movies."}
       }],
      "messages": [
       {
          "author": "user",
          "content": "Are my favorite movies based on a book series?",
       },
       {
          "author": "bot",
          "content": "Yes, your favorite movies, The Lord of the Rings and The Hobbit, are based on book series by J.R.R. Tolkien.",
       },
       {
          "author": "user",
          "content": "When were these books published?",
       }],
   }],
  "parameters": {
    "temperature": 0.3,
    "maxOutputTokens": 200,
    "topP": 0.8,
    "topK": 40
  }
}'

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Python API.

from vertexai.language_models import ChatModel, InputOutputTextPair

def science_tutoring(temperature: float = 0.2) -> None:
    chat_model = ChatModel.from_pretrained("chat-bison@001")

    # TODO developer - override these parameters as needed:
    parameters = {
        "temperature": temperature,  # Temperature controls the degree of randomness in token selection.
        "max_output_tokens": 256,  # Token limit determines the maximum amount of text output.
        "top_p": 0.95,  # Tokens are selected from most probable to least until the sum of their probabilities equals the top_p value.
        "top_k": 40,  # A top_k of 1 means the selected token is the most probable among all tokens.
    }

    chat = chat_model.start_chat(
        context="My name is Miles. You are an astronomer, knowledgeable about the solar system.",
        examples=[
            InputOutputTextPair(
                input_text="How many moons does Mars have?",
                output_text="The planet Mars has two moons, Phobos and Deimos.",
            ),
        ],
    )

    response = chat.send_message(
        "How many planets are there in the solar system?", **parameters
    )
    print(f"Response from Model: {response.text}")

    return response

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');

// Imports the Google Cloud Prediction service client
const {PredictionServiceClient} = aiplatform.v1;

// Import the helper module for converting arbitrary protobuf.Value objects.
const {helpers} = aiplatform;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const publisher = 'google';
const model = 'chat-bison@001';

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function callPredict() {
  // Configure the parent resource
  const endpoint = `projects/${project}/locations/${location}/publishers/${publisher}/models/${model}`;

  const prompt = {
    context:
      'My name is Miles. You are an astronomer, knowledgeable about the solar system.',
    examples: [
      {
        input: {content: 'How many moons does Mars have?'},
        output: {
          content: 'The planet Mars has two moons, Phobos and Deimos.',
        },
      },
    ],
    messages: [
      {
        author: 'user',
        content: 'How many planets are there in the solar system?',
      },
    ],
  };
  const instanceValue = helpers.toValue(prompt);
  const instances = [instanceValue];

  const parameter = {
    temperature: 0.2,
    maxOutputTokens: 256,
    topP: 0.95,
    topK: 40,
  };
  const parameters = helpers.toValue(parameter);

  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);
  console.log('Get chat prompt response');
  const predictions = response.predictions;
  console.log('\tPredictions :');
  for (const prediction of predictions) {
    console.log(`\t\tPrediction : ${JSON.stringify(prediction)}`);
  }
}

callPredict();

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.cloud.aiplatform.v1beta1.EndpointName;
import com.google.cloud.aiplatform.v1beta1.PredictResponse;
import com.google.cloud.aiplatform.v1beta1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1beta1.PredictionServiceSettings;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

// Send a Predict request to a large language model to test a chat prompt
public class PredictChatPromptSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String instance =
        "{\n"
            + "   \"context\":  \"My name is Ned. You are my personal assistant. My favorite movies"
            + " are Lord of the Rings and Hobbit.\",\n"
            + "   \"examples\": [ { \n"
            + "       \"input\": {\"content\": \"Who do you work for?\"},\n"
            + "       \"output\": {\"content\": \"I work for Ned.\"}\n"
            + "    },\n"
            + "    { \n"
            + "       \"input\": {\"content\": \"What do I like?\"},\n"
            + "       \"output\": {\"content\": \"Ned likes watching movies.\"}\n"
            + "    }],\n"
            + "   \"messages\": [\n"
            + "    { \n"
            + "       \"author\": \"user\",\n"
            + "       \"content\": \"Are my favorite movies based on a book series?\"\n"
            + "    }]\n"
            + "}";
    String parameters =
        "{\n"
            + "  \"temperature\": 0.3,\n"
            + "  \"maxDecodeSteps\": 200,\n"
            + "  \"topP\": 0.8,\n"
            + "  \"topK\": 40\n"
            + "}";
    String project = "YOUR_PROJECT_ID";
    String publisher = "google";
    String model = "chat-bison@001";

    predictChatPrompt(instance, parameters, project, publisher, model);
  }

  static void predictChatPrompt(
      String instance, String parameters, String project, String publisher, String model)
      throws IOException {
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      String location = "us-central1";
      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(project, location, publisher, model);

      Value.Builder instanceValue = Value.newBuilder();
      JsonFormat.parser().merge(instance, instanceValue);
      List<Value> instances = new ArrayList<>();
      instances.add(instanceValue.build());

      Value.Builder parameterValueBuilder = Value.newBuilder();
      JsonFormat.parser().merge(parameters, parameterValueBuilder);
      Value parameterValue = parameterValueBuilder.build();

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, parameterValue);
      System.out.println("Predict Response");
    }
  }
}

C#

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan C# di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API C# Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Cloud.AIPlatform.V1;
using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.Linq;
using Value = Google.Protobuf.WellKnownTypes.Value;

public class PredictChatPromptSample
{
    public string PredictChatPrompt(
        string projectId = "your-project-id",
        string locationId = "us-central1",
        string publisher = "google",
        string model = "chat-bison@001"
    )
    {
        // Initialize client that will be used to send requests.
        // This client only needs to be created once,
        // and can be reused for multiple requests.
        var client = new PredictionServiceClientBuilder
        {
            Endpoint = $"{locationId}-aiplatform.googleapis.com"
        }.Build();

        // Configure the parent resource.
        var endpoint = EndpointName.FromProjectLocationPublisherModel(projectId, locationId, publisher, model);

        // Initialize request argument(s).
        var prompt = "How many planets are there in the solar system?";

        // You can construct Protobuf from JSON.
        var instanceJson = JsonConvert.SerializeObject(new
        {
            context = "My name is Miles. You are an astronomer, knowledgeable about the solar system.",
            examples = new[]
            {
                new
                {
                    input = new { content = "How many moons does Mars have?" },
                    output = new { content = "The planet Mars has two moons, Phobos and Deimos." }
                }
            },
            messages = new[]
            {
                new
                {
                    author = "user",
                    content = prompt
                }
            }
        });
        var instance = Value.Parser.ParseJson(instanceJson);

        var instances = new List<Value>
        {
            instance
        };

        // You can construct Protobuf from JSON.
        var parametersJson = JsonConvert.SerializeObject(new
        {
            temperature = 0.3,
            maxDecodeSteps = 200,
            topP = 0.8,
            topK = 40
        });
        var parameters = Value.Parser.ParseJson(parametersJson);

        // Make the request.
        var response = client.Predict(endpoint, instances, parameters);

        // Parse the response and return the content.
        var content = response.Predictions.First().StructValue.Fields["candidates"].ListValue.Values[0].StructValue.Fields["content"].StringValue;
        Console.WriteLine($"Content: {content}");
        return content;
    }
}

Konsol

Untuk menggunakan Vertex AI Studio guna menguji prompt chat di Konsol Google Cloud, lakukan hal berikut:

  1. Di bagian Vertex AI pada Konsol Google Cloud, buka halaman Vertex AI Studio.

    Buka Vertex AI Studio

  2. Klik tab Get started.
  3. Klik Text chat.
  4. Mengonfigurasi prompt sebagai berikut:

    • Konteks: Masukkan petunjuk untuk tugas yang Anda ingin dijalankan model dan sertakan informasi kontekstual apa pun untuk referensi model.
    • Contoh: Untuk prompt few-shot, tambahkan contoh input-output yang menunjukkan pola perilaku yang akan ditiru oleh model.
  5. Konfigurasi model dan parameter:

    • Model: Pilih model yang ingin Anda gunakan.
    • Suhu: Gunakan penggeser atau kotak teks untuk memasukkan nilai suhu.

      Suhu digunakan untuk pengambilan sampel selama pembuatan respons, yang terjadi saat topP dan topK diterapkan. Suhu mengontrol tingkat keacakan dalam pemilihan token. Suhu yang lebih rendah cocok untuk perintah yang memerlukan respons yang kurang terbuka atau kreatif, sedangkan suhu yang lebih tinggi dapat memberikan hasil yang lebih beragam atau kreatif. Suhu 0 berarti token probabilitas tertinggi selalu dipilih. Dalam hal ini, respons untuk permintaan tertentu sebagian besar deterministik, tetapi sedikit variasi masih dapat dilakukan.

      Jika model menampilkan respons yang terlalu umum, terlalu pendek, atau model memberikan respons penggantian, coba tingkatkan suhu.

    • Batas token: Gunakan penggeser atau kotak teks untuk memasukkan nilai batas output maksimum.

      Jumlah maksimum token yang dapat dibuat dalam respons. Token terdiri dari sekitar empat karakter. 100 token setara dengan sekitar 60-80 kata.

      Tentukan nilai yang lebih rendah untuk respons yang lebih pendek dan nilai yang lebih tinggi untuk respons yang berpotensi lebih lama.

    • Top-K: Gunakan penggeser atau kotak teks untuk memasukkan nilai untuk top-K.

      Top-K mengubah cara model memilih token untuk output. Top-K 1 berarti token yang dipilih berikutnya adalah yang paling mungkin di antara semua token dalam kosakata model (juga disebut decoding greedy), sedangkan top-K 3 berarti token berikutnya dipilih di antara tiga token yang paling mungkin dengan menggunakan suhu.

      Untuk setiap langkah pemilihan token, token top-K dengan probabilitas tertinggi akan diambil sampelnya. Kemudian token akan difilter lebih lanjut berdasarkan top-P dengan token akhir yang dipilih menggunakan pengambilan sampel suhu.

      Tentukan nilai yang lebih rendah untuk respons acak yang lebih sedikit dan nilai yang lebih tinggi untuk respons acak yang lebih banyak.

    • Top-P: Gunakan penggeser atau kotak teks untuk memasukkan nilai untuk top-P. Token dipilih dari yang paling mungkin hingga yang paling tidak mungkin sampai jumlah probabilitasnya sama dengan nilai top-P. Untuk hasil yang paling sedikit variabelnya, tetapkan top-P ke 0.
  6. Masukkan pesan di kotak pesan untuk memulai percakapan dengan chatbot. Chatbot menggunakan pesan sebelumnya sebagai konteks untuk respons baru.
  7. Opsional: Untuk menyimpan prompt Anda ke My prompts, klik Save.
  8. Opsional: Untuk mendapatkan kode Python atau perintah curl untuk prompt Anda, klik View code.
  9. Ostional: Untuk menghapus semua pesan sebelumnya, klik Clear conversation

Men-streaming respons dari model chat

Untuk melihat contoh permintaan dan respons kode menggunakan REST API, lihat Contoh menggunakan REST API.

Untuk melihat contoh permintaan dan respons kode menggunakan Vertex AI SDK untuk Python, lihat Contoh penggunaan Vertex AI SDK untuk Python.

Langkah selanjutnya