Trillium (v6e) introduction

v6e is used to refer to Trillium in this documentation, TPU API, and logs. v6e represents Google's 6th generation of TPU.

With 256 chips per Pod, v6e architecture shares many similarities with v5e. This system is optimized for transformer, text-to-image, and convolutional neural network (CNN) training, fine-tuning, and serving.

See the v6e document for information about v6e system architecture and configurations.

This introduction document focuses on the processes for model training and serving using JAX, PyTorch, or TensorFlow frameworks. With each framework, you can provision TPUs using queued resources or Google Kubernetes Engine (GKE). GKE setup can be done using XPK or GKE commands.

General procedure to train or serve a model using v6e

  1. Prepare a Google Cloud project
  2. Secure capacity
  3. Set up your TPU environment
  4. Provision the Cloud TPU environment
  5. Run a model training or inference workload
  6. Clean up

Prepare a Google Cloud project

  1. Sign in to your Google Account. If you haven't already, sign up for a new account.
  2. In the Google Cloud console, select or create a Cloud project from the project selector page.
  3. Enable billing for your Google Cloud project. Billing is required for all Google Cloud usage.
  4. Install the gcloud alpha components.
  5. Run the following command to install the latest version of gcloudcomponents.

    gcloud components update
    
  6. Enable the TPU API through the following gcloud command in Cloud Shell. You can also enable it from the Google Cloud console.

    gcloud services enable tpu.googleapis.com
    
  7. Enable permissions with the TPU service account for Compute Engine API

    Service accounts allow the Cloud TPU service to access other Google Cloud services. A user-managed service account is a recommended Google Cloud practice. Follow these guides to create and grant roles. The following roles are necessary:

    • TPU Admin
    • Storage Admin
    • Logs Writer
    • Monitoring Metric Writer

    a. Set up XPK permissions with your user account for GKE: XPK.

  8. Authenticate with your Google account and set the default project ID and zone.
    auth login authorizes gcloud to access Google Cloud with Google user credentials.
    PROJECT_ID is the Google Cloud project name.
    ZONE is the zone where you want to create the TPU.

     gcloud auth login
     gcloud config set project ${PROJECT_ID}
     gcloud config set compute/zone ${ZONE}
    
  9. Create a service identity for the TPU VM.

     gcloud alpha compute tpus tpu-vm service-identity create --zone=${ZONE}
    

Secure capacity

Contact your Cloud TPU support sales/account to request TPU quota and to answer any questions about capacity.

Provision the Cloud TPU environment

v6e TPUs can be provisioned and managed with GKE, with GKE and XPK (a wrapper CLI tool over GKE), or as queued resources.

Prerequisites

  • Verify that your project has enough TPUS_PER_TPU_FAMILY quota, which specifies the maximum number of chips you can access within your Google Cloud project.
  • v6e has been tested with the following configuration:
    • python 3.10 or later
    • Nightly software versions:
      • nightly JAX 0.4.32.dev20240912
      • nightly LibTPU 0.1.dev20240912+nightly
    • Stable software versions:
      • JAX + JAX Lib of v0.4.37
  • Verify that your project has enough TPU quota for:

    • TPU VM quota
    • IP Address quota
    • Hyperdisk-balance quota

  • User project permissions

Environment variables

In a Cloud Shell, create the following environment variables:

export NODE_ID=TPU_NODE_ID # TPU name
export PROJECT_ID=PROJECT_ID
export ACCELERATOR_TYPE=v6e-16
export ZONE=us-east1-d
export RUNTIME_VERSION=v2-alpha-tpuv6e
export SERVICE_ACCOUNT=your-service-account
export QUEUED_RESOURCE_ID=QUEUED_RESOURCE_ID
export VALID_DURATION=VALID_DURATION

# Additional environment variable needed for provisioning Multislice:
export NUM_SLICES=NUM_SLICES

# Use a custom network for better performance as well as to avoid having the default network becoming overloaded.

export NETWORK_NAME=${PROJECT_ID}-mtu9k
export NETWORK_FW_NAME=${NETWORK_NAME}-fw

Command flag descriptions

Variable Description
NODE_ID The user-assigned ID of the TPU which is created when the queued resource request is allocated.
PROJECT_ID Google Cloud Project Name. Use an existing project or create a new one at
ZONE See the TPU regions and zones document for the supported zones.
ACCELERATOR_TYPE See Accelerator Types.
RUNTIME_VERSION v2-alpha-tpuv6e
SERVICE_ACCOUNT This is the email address for your service account that you can find in Google Cloud Console -> IAM -> Service Accounts

For example: tpu-service-account@<your_project_ID>.iam.gserviceaccount.com.com

NUM_SLICES The number of slices to create (needed for Multislice only).
QUEUED_RESOURCE_ID The user-assigned text ID of the queued resource request.
VALID_DURATION The duration for which the queued resource request is valid.
NETWORK_NAME The name of a secondary network to use.
NETWORK_FW_NAME The name of a secondary network firewall to use.

Network performance optimizations

For best performance use a network with 8,896 MTU (maximum transmission unit).

By default, a Virtual Private Cloud (VPC) only provides an MTU of 1,460 bytes which will provide suboptimal network performance. You can set a VPC network's MTU to any value between 1,300 bytes and 8,896 bytes (inclusive). Common custom MTU sizes are 1,500 bytes (standard Ethernet) or 8,896 bytes (the maximum possible). For more information, see Valid VPC network MTU sizes.

For more information about changing the MTU setting for an existing or default network, see Change the MTU setting of a VPC network.

The following example creates a network with 8,896 MTU.

export RESOURCE_NAME=RESOURCE_NAME
export NETWORK_NAME=${RESOURCE_NAME}-privatenetwork
export NETWORK_FW_NAME=${RESOURCE_NAME}-privatefirewall
export PROJECT=X
gcloud compute networks create ${NETWORK_NAME} --mtu=8896 --project=${PROJECT_ID} \
 --subnet-mode=auto --bgp-routing-mode=regional
gcloud compute firewall-rules create ${NETWORK_FW_NAME} --network ${NETWORK_NAME}
 --allow tcp,icmp,udp --project=${PROJECT}

Using multi-NIC (Option for Multislice)

The following environment variables are needed for a secondary subnet when you are using a Multislice environment.

export NETWORK_NAME_2=${RESOURCE_NAME}
export SUBNET_NAME_2=${RESOURCE_NAME}
export FIREWALL_RULE_NAME=${RESOURCE_NAME}
export ROUTER_NAME=${RESOURCE_NAME}-network-2
export NAT_CONFIG=${RESOURCE_NAME}-natconfig-2
export REGION=us-central2

Use the following commands to create custom IP routing for the network and subnet.

gcloud compute networks create "${NETWORK_NAME_2}" --mtu=8896
   --bgp-routing-mode=regional --subnet-mode=custom --project=${PROJECT_ID}
gcloud compute networks subnets create "${SUBNET_NAME_2}" \
   --network="${NETWORK_NAME_2}" \
   --range=10.10.0.0/18 --region="${REGION}" \
   --project=$PROJECT

gcloud compute firewall-rules create "${FIREWALL_RULE_NAME}" \
   --network "${NETWORK_NAME_2}" --allow tcp,icmp,udp \
   --source-ranges 10.10.0.0/18 --project=${PROJECT_ID}

gcloud compute routers create "${ROUTER_NAME}" \
  --project="${PROJECT_ID}" \
  --network="${NETWORK_NAME_2}" \
  --region="${REGION}"

gcloud compute routers nats create "${NAT_CONFIG}" \
  --router="${ROUTER_NAME}" \
  --region="${REGION}" \
  --auto-allocate-nat-external-ips \
  --nat-all-subnet-ip-ranges \
  --project="${PROJECT_ID}" \
  --enable-logging

Once a multi-network slice has been created, you can validate that both NICs are being used by setting up an XPK cluster and running --command ifconfig as part of the XPK workload.

Use the following xpk workload command to display the output of the ifconfig command in Cloud console logs and check that both eth0 and eth1 have mtu=8896.

python3 xpk.py workload create \
   --cluster CLUSTER_NAME \
   (--base-docker-image maxtext_base_image|--docker-image CLOUD_IMAGE_NAME \
   --workload ${USER}-xpk-$ACCELERATOR_TYPE-$NUM_SLICES \
   --tpu-type=${ACCELERATOR_TYPE} \
   --num-slices=${NUM_SLICES}  \
   --on-demand \
   --zone $ZONE \
   --project $PROJECT_ID \
   [--enable-debug-logs] \
   [--use-vertex-tensorboard] \
   --command "ifconfig"

Verify that both eth0 and eth1 have mtu=8,896. a way to verify you have multi-nic running is by running the command --command "ifconfig" as part of the XPK workload. Then look at the printed output of that xpk workload in cloud console logs and check that both eth0 and eth1 have mtu=8896.

Improved TCP settings

For TPUs created using the queued resources interface, you can run the following command to improve network performance by increasing TCP receive buffer limits.

gcloud alpha compute tpus queued-resources ssh "${QUEUED_RESOURCE_ID}" \
  --project "$PROJECT" \
  --zone "$ZONE" \
  --node=all \
  --command='sudo sh -c "echo \"4096 41943040 314572800\" > /proc/sys/net/ipv4/tcp_rmem"' \
  --worker=all

Provisioning with queued resources

Allocated capacity can be provisioned using the queued-resource create command.

  1. Create a TPU queued resource request.

    The --reserved flag is only needed for reserved resources, not for on-demand resources.

    gcloud alpha compute tpus queued-resources create ${QUEUED_RESOURCE_ID} \
      --node-id ${TPU_NAME} \
      --project ${PROJECT_ID} \
      --zone ${ZONE} \
      --accelerator-type ${ACCELERATOR_TYPE} \
      --runtime-version ${RUNTIME_VERSION} \
      --valid-until-duration ${VALID_DURATION} \
      --service-account ${SERVICE_ACCOUNT} \
      [--reserved]
    
      # The following flags are only needed if you are using Multislice.
      --node-count node-count  # Number of slices in a Multislice \
      --node-prefix node-prefix # An optional user-defined node prefix;
       the default is QUEUED_RESOURCE_ID.

    If the queued resource request is created successfully, the state within the "response" field will be either "WAITING_FOR_RESOURCES" or "FAILED". If the queued resource request is in the "WAITING_FOR_RESOURCES" state, the resource was added to the queue and will be provisioned when there is enough allocated TPU capacity. If the queued resource request is in the "FAILED" state, the failure reason will be in the output. The queued resource request will expire if a v6e isn't provisioned within the specified duration, and the state becomes "FAILED". See the Queued Resources public documentation for more information.

    When your queued resource request is in the "ACTIVE" state, you can connect to your TPU VMs using SSH. Use the list or describe commands to query the status of your queued resource.

    gcloud alpha compute tpus queued-resources describe ${QUEUED_RESOURCE_ID}  \
       --project ${PROJECT_ID} --zone ${ZONE}
    

    When the queued resource is in the "ACTIVE" state, the output is similar to the following:

      state:
       state: ACTIVE
    
  2. Manage your TPU VMs. For options to manage your TPU VMs, see managing TPU VMs.

  3. Connect to your TPU VMs using SSH

    You can install binaries on each TPU VM in your TPU slice and run code. See the VM Types section to determine how many VMs your slice will have.

    To install the binaries or run code, you can use SSH to connect to a VM using the tpu-vm ssh command.

    gcloud alpha compute tpus tpu-vm ssh ${TPU_NAME} \
       --node=all # add this flag if you are using Multislice
    

    To use SSH to connect to a specific VM, use the --worker flag which follows a 0-based index:

    gcloud alpha compute tpus tpu-vm ssh ${TPU_NAME} --worker=1
    

    If you have slice shapes greater than 8 chips, you will have multiple VMs in one slice. In this case use the --worker=all and --command parameters in your gcloud alpha compute tpus tpu-vm ssh command to run a command on all VMs simultaneously. For example:

    gcloud alpha compute tpus tpu-vm ssh ${TPU_NAME}  --project ${PROJECT_ID} \
      --zone  ${ZONE} --worker=all \
      --command='pip install -U --pre jax jaxlib libtpu-nightly requests -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html \
      -f https://storage.googleapis.com/jax-releases/libtpu_releases.html'
    
  4. Delete a queued resource

    Delete a queued resource at the end of the session or remove queued resource requests that are in the "FAILED" state. To delete a queued resource, delete the slice and then the queued resource request in 2 steps:

    gcloud alpha compute tpus tpu-vm delete $TPU_NAME --project=${PROJECT_ID} \
     --zone=${ZONE} --quiet
    
    gcloud alpha compute tpus queued-resources delete ${QUEUED_RESOURCE_ID} \
     --project ${PROJECT_ID} --zone ${ZONE} --quiet
    
    gcloud alpha compute tpus queued-resources delete ${QUEUED_RESOURCE_ID} \
      --project ${PROJECT_ID} --zone ${ZONE} --quiet --force
    

Provisioning v6e TPUs with GKE or XPK

If you are using GKE commands with v6e, you can use Kubernetes commands or XPK to provision TPUs and train or serve models. See Plan for TPUs in GKE to learn how to plan your TPU configurations in GKE clusters. The following sections provide commands to create an XPK cluster with single NIC support and multi NIC support.

Commands to create and XPK cluster with single NIC support

export CLUSTER_NAME xpk-cluster-name
export ZONE=us-central2-b
export PROJECT=your-project-id
export TPU_TYPE=v6e-256
export NUM_SLICES=2

export NETWORK_NAME=${CLUSTER_NAME}-mtu9k
export NETWORK_FW_NAME=${NETWORK_NAME}-fw
   gcloud compute networks create ${NETWORK_NAME} \
   --mtu=8896 \
   --project=${PROJECT} \
   --subnet-mode=auto \
   --bgp-routing-mode=regional
   gcloud compute firewall-rules create ${NETWORK_FW_NAME} \
   --network ${NETWORK_NAME} \
   --allow tcp,icmp,udp \
   --project=${PROJECT}
export CLUSTER_ARGUMENTS="--network=${NETWORK_NAME} --subnetwork=${NETWORK_NAME}"
   python3 xpk.py cluster create --cluster $CLUSTER_NAME \
   --cluster-cpu-machine-type=n1-standard-8 \
   --num-slices=$NUM_SLICES \
   --tpu-type=$TPU_TYPE \
   --zone=$ZONE  \
   --project=$PROJECT \
   --on-demand \
   --custom-cluster-arguments="${CLUSTER_ARGUMENTS}"  \
   --create-vertex-tensorboard

Command flag descriptions

Variable Description
CLUSTER_NAME The user-assigned name for the XPK cluster.
PROJECT_ID Google Cloud Project Name. Use an existing project or create a new one at
ZONE See the TPU regions and zones document for the supported zones.
TPU_TYPE See Accelerator Types.
NUM_SLICES The number of slices you want to create
CLUSTER_ARGUMENTS The network and subnetwork to use.

For example: "--network=${NETWORK_NAME} --subnetwork=${NETWORK_NAME}"

NUM_SLICES The number of slices to create.
NETWORK_NAME The name of a secondary network to use.
NETWORK_FW_NAME The name of a secondary network firewall to use.

Commands to create an XPK cluster with multi NIC support

export CLUSTER_NAME xpk-cluster-name
export ZONE=us-central2-b
export PROJECT=your-project-id
export TPU_TYPE=v6e-256
export NUM_SLICES=2

export NETWORK_NAME_1=${CLUSTER_NAME}-mtu9k-1-${ZONE}
export exportSUBNET_NAME_1=${CLUSTER_NAME}-privatesubnet-1-${ZONE}
export NETWORK_FW_NAME_1=${NETWORK_NAME_1}-fw-1-${ZONE}
export FIREWALL_RULE_NAME=${CLUSTER_NAME}-privatefirewall-1-${ZONE}
export ROUTER_NAME=${CLUSTER_NAME}-network-1-${ZONE}
export NAT_CONFIG=${CLUSTER_NAME}-natconfig-1-${ZONE}
   gcloud compute networks create "${NETWORK_NAME_1}" \
   --mtu=8896 \
   --bgp-routing-mode=regional \
   --subnet-mode=custom \
   --project=$PROJECT
   gcloud compute networks subnets create "${SUBNET_NAME_1}" \
   --network="${NETWORK_NAME_1}" \
   --range=10.11.0.0/18 \
   --region="${REGION}" \
   --project=$PROJECT
   gcloud compute firewall-rules create "${FIREWALL_RULE_NAME}" \
   --network "${NETWORK_NAME_1}" \
   --allow tcp,icmp,udp \
   --project="${PROJECT}"
  gcloud compute routers create "${ROUTER_NAME}" \
    --project="${PROJECT}" \
    --network="${NETWORK_NAME_1}" \
    --region="${REGION}"
  gcloud compute routers nats create "${NAT_CONFIG}" \
     --router="${ROUTER_NAME}" \
     --region="${REGION}" \
     --auto-allocate-nat-external-ips \
     --nat-all-subnet-ip-ranges \
     --project="${PROJECT}" \
     --enable-logging
Secondary subnet for multi-nic experience. Need custom ip routing to be different from the first network's subnet.

export NETWORK_NAME_2=${CLUSTER_NAME}-privatenetwork-2-${ZONE}
export SUBNET_NAME_2=${CLUSTER_NAME}-privatesubnet-2-${ZONE}
export FIREWALL_RULE_NAME=${CLUSTER_NAME}-privatefirewall-2-${ZONE}
export ROUTER_NAME=${CLUSTER_NAME}-network-2-${ZONE}
export NAT_CONFIG=${CLUSTER_NAME}-natconfig-2-${ZONE}
   gcloud compute networks create "${NETWORK_NAME_2}" \
   --mtu=8896 \
   --bgp-routing-mode=regional \
   --subnet-mode=custom \
   --project=$PROJECT
   gcloud compute networks subnets create "${SUBNET_NAME_2}" \
   --network="${NETWORK_NAME_2}" \
   --range=10.10.0.0/18 \
   --region="${REGION}" \
   --project=$PROJECT
   gcloud compute firewall-rules create "${FIREWALL_RULE_NAME}" \
   --network "${NETWORK_NAME_2}" \
   --allow tcp,icmp,udp \
   --project="${PROJECT}"
   gcloud compute routers create "${ROUTER_NAME}" \
     --project="${PROJECT}" \
     --network="${NETWORK_NAME_2}" \
     --region="${REGION}"
   gcloud compute routers nats create "${NAT_CONFIG}" \
     --router="${ROUTER_NAME}" \
     --region="${REGION}" \
     --auto-allocate-nat-external-ips \
     --nat-all-subnet-ip-ranges \
     --project="${PROJECT}" \
     --enable-logging
export CLUSTER_ARGUMENTS="--enable-dataplane-v2 --enable-ip-alias --enable-multi-networking
--network=${NETWORK_NAME_1} --subnetwork=${SUBNET_NAME_1}"

export NODE_POOL_ARGUMENTS="--additional-node-network
network=${NETWORK_NAME_2},subnetwork=${SUBNET_NAME_2}"
python3 ~/xpk/xpk.py cluster create \
--cluster $CLUSTER_NAME \
--num-slices=$NUM_SLICES \
--tpu-type=$TPU_TYPE \
--zone=$ZONE  \
--project=$PROJECT \
--on-demand \
--custom-cluster-arguments="${CLUSTER_ARGUMENTS}" \
--custom-nodepool-arguments="${NODE_POOL_ARGUMENTS}" \
--create-vertex-tensorboard

Command flag descriptions

Variable Description
CLUSTER_NAME The user-assigned name for the XPK cluster.
PROJECT_ID Google Cloud Project Name. Use an existing project or create a new one at
ZONE See the TPU regions and zones document for the supported zones.
TPU_TYPE See Accelerator Types.
NUM_SLICES The number of slices you want to create
CLUSTER_ARGUMENTS The network and subnetwork to use.

For example: "--enable-dataplane-v2 --enable-ip-alias --enable-multi-networking --network=${NETWORK_NAME_1} --subnetwork=${SUBNET_NAME_1}"

NODE_POOL_ARGUMENTS Additional node network to use.

For example: "--additional-node-network network=${NETWORK_NAME_2},subnetwork=${SUBNET_NAME_2}"

NUM_SLICES The number of slices to create (needed for Multislice only).
NETWORK_NAME The name of a secondary network to use.
NETWORK_FW_NAME The name of a secondary network firewall to use.

Framework setup

This section describes the general setup process for ML model training using JAX, PyTorch, or TensorFlow frameworks. You can provision TPUs using queued resources or GKE. GKE setup can be done using XPK or Kubernetes commands.

Setup for JAX

This section provides examples for running JAX workloads on GKE, with or without XPK, as well as using queued resources.

Setup JAX using GKE

The following example sets up a 2X2 single host using a Kubernetes YAML file.

Single slice on single host

apiVersion: v1
kind: Pod
metadata:
  name: tpu-pod-jax-v6e-a
spec:
  restartPolicy: Never
  nodeSelector:
    cloud.google.com/gke-tpu-accelerator: tpu-v6e-slice
    cloud.google.com/gke-tpu-topology: 2x2
  containers:
  - name: tpu-job
    image: python:3.10
    securityContext:
      privileged: true
    command:
    - bash
    - -c
    - |
      pip install -U --pre jax jaxlib libtpu-nightly requests -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
      JAX_PLATFORMS=tpu,cpu ENABLE_PJRT_COMPATIBILITY=true python3 -c 'import jax; print("Total TPU chips:", jax.device_count())'
    resources:
      requests:
        google.com/tpu: 4
      limits:
        google.com/tpu: 4

Upon successful completion, you should see the following message in the GKE log:

Total TPU chips: 4

Single slice on multi-host

The following example sets up a 4X4 multi-host node pool using a Kubernetes YAML file.

apiVersion: v1
kind: Service
metadata:
  name: headless-svc
spec:
  clusterIP: None
  selector:
    job-name: tpu-available-chips
---
apiVersion: batch/v1
kind: Job
metadata:
  name: tpu-available-chips
spec:
  backoffLimit: 0
  completions: 4
  parallelism: 4
  completionMode: Indexed
  template:
    spec:
      subdomain: headless-svc
      restartPolicy: Never
      nodeSelector:
        cloud.google.com/gke-tpu-accelerator: tpu-v6e-slice
        cloud.google.com/gke-tpu-topology: 4x4
      containers:
      - name: tpu-job
        image: python:3.10
        ports:
        - containerPort: 8471 # Default port using which TPU VMs communicate
        - containerPort: 8431 # Port to export TPU runtime metrics, if supported.
        securityContext:
          privileged: true
        command:
        - bash
        - -c
        - |
          pip install -U --pre jax jaxlib libtpu-nightly requests -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
          JAX_PLATFORMS=tpu,cpu ENABLE_PJRT_COMPATIBILITY=true python -c 'import jax; print("Total TPU chips:", jax.device_count())'
        resources:
          requests:
            google.com/tpu: 4
          limits:
            google.com/tpu: 4

Upon successful completion, you should see the following message in the GKE log:

Total TPU chips: 16

Multislice on multi-host

The following example sets up two 4X4 multi-host node pools using a Kubernetes YAML file.

As a prerequisite, you need to install JobSet v0.2.3 or later.

apiVersion: jobset.x-k8s.io/v1alpha2
kind: JobSet
metadata:
  name: multislice-job
  annotations:
    alpha.jobset.sigs.k8s.io/exclusive-topology: cloud.google.com/gke-nodepool
spec:
  failurePolicy:
    maxRestarts: 4
  replicatedJobs:
    - name: slice
      replicas: 2
      template:
        spec:
          parallelism: 4
          completions: 4
          backoffLimit: 0
          template:
            spec:
              hostNetwork: true
              dnsPolicy: ClusterFirstWithHostNet
              nodeSelector:
                cloud.google.com/gke-tpu-accelerator: tpu-v6e-slice
                cloud.google.com/gke-tpu-topology: 4x4
              hostNetwork: true
              containers:
              - name: jax-tpu
                image: python:3.10
                ports:
                - containerPort: 8471
                - containerPort: 8080
                - containerPort: 8431
                securityContext:
                  privileged: true
                command:
                - bash
                - -c
                - |
                  pip install -U --pre jax jaxlib libtpu-nightly requests -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
                  JAX_PLATFORMS=tpu,cpu ENABLE_PJRT_COMPATIBILITY=true python -c 'import jax; print("Total TPU chips:", jax.device_count())'
                resources:
                  limits:
                   google.com/tpu: 4
                  requests:
                   google.com/tpu: 4

Upon successful completion, you should see the following message in the GKE log:

Total TPU chips: 32

For more information, see Run a Multislice workload in the GKE documentation.

For better performance, Enable hostNetwork.

Multi-NIC

To take advantage of multi-NIC in GKE, the Kubernetes Pod manifest needs to have additional annotations. The following is a non-TPU multi-NIC workload example manifest.

apiVersion: v1
kind: Pod
metadata:
  name: sample-netdevice-pod-1
  annotations:
    networking.gke.io/default-interface: 'eth0'
    networking.gke.io/interfaces: |
      [
        {"interfaceName":"eth0","network":"default"},
        {"interfaceName":"eth1","network":"netdevice-network"}
      ]
spec:
  containers:
  - name: sample-netdevice-pod
    image: busybox
    command: ["sleep", "infinity"]
    ports:
    - containerPort: 80
  restartPolicy: Always
  tolerations:
  - key: "google.com/tpu"
    operator: "Exists"
    effect: "NoSchedule"

If you exec into the Kubernetes Pod, you should see the additional NIC using the following code.

$ k exec --stdin --tty sample-netdevice-pod-1 -- /bin/sh
/ # ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
2: eth0@if11: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1460 qdisc noqueue
    link/ether da:be:12:67:d2:25 brd ff:ff:ff:ff:ff:ff
    inet 10.124.2.6/24 brd 10.124.2.255 scope global eth0
       valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1460 qdisc mq qlen 1000
    link/ether 42:01:ac:18:00:04 brd ff:ff:ff:ff:ff:ff
    inet 172.24.0.4/32 scope global eth1
       valid_lft forever preferred_lft forever

Setup JAX using GKE with XPK

See an example in the xpk README.

To set up and run XPK with MaxText, see: How to run MaxText.

Setup JAX using queued resources

Install JAX on all TPU VMs in your slice or slices simultaneously using gcloud alpha compute tpus tpu-vm ssh. For Multislice, add --node=all.


gcloud alpha compute tpus tpu-vm ssh ${TPU_NAME} --project ${PROJECT_ID} \
 --zone ${ZONE} --worker=all \
 --command='pip install -U --pre jax jaxlib libtpu-nightly requests -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/libtpu_releases.html</code>'

You can run the following Python code to check how many TPU cores are available in your slice and to test that everything is installed correctly (the outputs shown here were produced with a v6e-16 slice):

gcloud alpha compute tpus tpu-vm ssh ${TPU_NAME} --project ${PROJECT_ID} \
   --zone ${ZONE} --worker=all  \
   --command='python3 -c "import jax; print(jax.device_count(), jax.local_device_count())"'

The output is similar to the following:

SSH: Attempting to connect to worker 0...
SSH: Attempting to connect to worker 1...
SSH: Attempting to connect to worker 2...
SSH: Attempting to connect to worker 3...
16 4
16 4
16 4
16 4

jax.device_count() shows the total number of chips in the given slice. jax.local_device_count() indicates the count of chips accessible by a single VM in this slice.

gcloud alpha compute tpus queued-resources ssh ${QUEUED_RESOURCE_ID} \
   --project=${PROJECT_ID} --zone=${ZONE} --worker=all  \
   --command='git clone -b mlperf4.1 https://github.com/google/maxdiffusion.git &&
   cd maxdiffusion && git checkout 975fdb7dbddaa9a53ad72a421cdb487dcdc491a3 &&
   && pip install -r requirements.txt  && pip install . '

Troubleshooting JAX setups

A general tip is to enable verbose logging in your GKE workload manifest. Then, provide the logs to GKE support.

TPU_MIN_LOG_LEVEL=0 TF_CPP_MIN_LOG_LEVEL=0 TPU_STDERR_LOG_LEVEL=0

Error messages

no endpoints available for service 'jobset-webhook-service'

This error means the jobset wasn't installed properly. Check to see if jobset-controller-manager deployment Kubernetes Pods are running. For more information, see the JobSet troubleshooting documentation for details.

TPU initialization failed: Failed to connect

Make sure your GKE node version is 1.30.4-gke.1348000 or later (GKE 1.31 is not supported).

Setup for PyTorch

This section describes how to start using PJRT on v6e with PyTorch/XLA. Python 3.10 is the recommended Python version.

Setup PyTorch using GKE with XPK

You can use the following Docker container with XPK which has PyTorch dependencies already installed:

us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.10_tpuvm_20241028

To create a XPK workload, use the following command:

python3 xpk.py workload create \
--cluster ${CLUSTER_NAME} \
[--docker-image | --base-docker-image] us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.10_tpuvm_20241028 \
--workload ${USER} -xpk-${ACCELERATOR_TYPE} -${NUM_SLICES} \
--tpu-type=${ACCELERATOR_TYPE} \
--num-slices=${NUM_SLICES}  \
--on-demand \
--zone ${ZONE} \
--project ${PROJECT_ID} \
--enable-debug-logs \
--command 'python3 -c "import torch; import torch_xla; import torch_xla.runtime as xr; print(xr.global_runtime_device_count())"'

Using --base-docker-image creates a new Docker image with the current working directory built into the new Docker.

Setup PyTorch using queued resources

Follow these steps to install PyTorch using queued resources and run a small script on v6e.

Install dependencies using SSH to access the VMs

For Multislice, add --node=all:

   gcloud compute tpus tpu-vm ssh ${TPU_NAME} \
    --project=${PROJECT_ID} \
    --zone=${ZONE} \
    --worker=all \
    --command='sudo apt install -y libopenblas-base pip3 \
    install --pre torch==2.6.0.dev20241028+cpu torchvision==0.20.0.dev20241028+cpu \
    --index-url https://download.pytorch.org/whl/nightly/cpu
    pip install "torch_xla[tpu] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.6.0.dev20241028-cp310-cp310-linux_x86_64.whl" -f https://storage.googleapis.com/libtpu-releases/index.html
    pip install torch_xla[pallas] -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html'

Improve performance of models with sizable, frequent allocations

For models which have sizable, frequent allocations we've observed that using tcmalloc improves performance significantly compared to the default malloc implementation, so the default malloc used on TPU VM is tcmalloc. However, depending on your workload (for example, with DLRM which has very large allocations for its embedding tables) tcmalloc may cause a slowdown in which case you may try to unset the following variable using the default malloc instead:

unset LD_PRELOAD

Use a Python script to do a calculation on v6e VM:

gcloud alpha compute tpus tpu-vm ssh ${TPU_NAME}
   --project ${PROJECT_ID} \
   --zone ${ZONE} --worker all --command='
   unset LD_PRELOAD
   python3 -c "import torch; import torch_xla; import torch_xla.core.xla_model as xm; print(xm.xla_device()); dev = xm.xla_device(); t1 = torch.randn(3,3,device=dev); t2 = torch.randn(3,3,device=dev); print(t1 + t2)"
'

This generates output similar to the following:

SSH: Attempting to connect to worker 0...
WARNING:root:libtpu.so and TPU device found. Setting PJRT_DEVICE=TPU.
xla:0
tensor([[ 0.3355, -1.4628, -3.2610],
        [-1.4656,  0.3196, -2.8766],
        [ 0.8668, -1.5060,  0.7125]], device='xla:0')

Setup for TensorFlow

For v6e Public Preview, only the tf-nightly runtime version is supported.

You can reset tpu-runtime with the v6e compatible TensorFlow version by running the following commands:

gcloud alpha compute tpus tpu-vm ssh ${TPU_NAME} --project ${PROJECT_ID} \
    --zone  ${ZONE} --worker=all --command="sudo sed -i 's/TF_DOCKER_URL=.*/TF_DOCKER_URL=gcr.io\/cloud-tpu-v2-images\/grpc_tpu_worker:v6e\"/' /etc/systemd/system/tpu-runtime.service"
gcloud alpha compute tpus tpu-vm ssh ${TPU_NAME}  --project ${PROJECT_ID} \
    --zone ${ZONE} --worker=all --command='sudo systemctl daemon-reload && sudo systemctl restart tpu-runtime'

Use SSH to access worker-0:

$ gcloud alpha compute tpus tpu-vm ssh ${TPU_NAME} --project ${PROJECT_ID} \
     --zone ${ZONE}

Install TensorFlow on worker-0:

sudo apt install -y libopenblas-base
pip install cloud-tpu-client
pip install https://storage.googleapis.com/tensorflow-public-build-artifacts/prod/tensorflow/official/release/nightly/linux_x86_tpu/wheel_py310/749/20240915-062017/github/tensorflow/build_output/tf_nightly_tpu-2.18.0.dev20240915-cp310
pip install cloud-tpu-client

pip install https://storage.googleapis.com/tensorflow-public-build-artifacts/prod/tensorflow/official/release/nightly/linux_x86_tpu/wheel_py310/749/20240915-062017/github/tensorflow/build_output/tf_nightly_tpu-2.18.0.dev20240915-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl \
-f https://storage.googleapis.com/libtpu-tf-releases/index.html --force

Export the TPU_NAME environment variable:

export TPU_NAME=v6e-16

You can run the following Python script to check how many TPU cores are available in your slice and to test that everything is installed correctly (the outputs shown were produced with a v6e-16 slice):

import TensorFlow as tf
print("TensorFlow version " + tf.__version__)

@tf.function
  def add_fn(x,y):
  z = x + y
  return z

  cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
  tf.config.experimental_connect_to_cluster(cluster_resolver)
  tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
  strategy = tf.distribute.TPUStrategy(cluster_resolver)

  x = tf.constant(1.)
  y = tf.constant(1.)
  z = strategy.run(add_fn, args=(x,y))
  print(z)

The output is similar to the following:

PerReplica:{
  0: tf.Tensor(2.0, shape=(), dtype=float32),
  1: tf.Tensor(2.0, shape=(), dtype=float32),
  2: tf.Tensor(2.0, shape=(), dtype=float32),
  3: tf.Tensor(2.0, shape=(), dtype=float32),
  4: tf.Tensor(2.0, shape=(), dtype=float32),
  5: tf.Tensor(2.0, shape=(), dtype=float32),
  6: tf.Tensor(2.0, shape=(), dtype=float32),
  7: tf.Tensor(2.0, shape=(), dtype=float32)
}

v6e with SkyPilot

You can use TPU v6e with SkyPilot. Use the following steps to add v6e-related location/pricing information to SkyPilot.

  1. Add the following to the end of ~/.sky/catalogs/v5/gcp/vms.csv :

    ,,,tpu-v6e-1,1,tpu-v6e-1,us-south1,us-south1-a,0,0
    ,,,tpu-v6e-1,1,tpu-v6e-1,europe-west4,europe-west4-a,0,0
    ,,,tpu-v6e-1,1,tpu-v6e-1,us-east5,us-east5-b,0,0
    ,,,tpu-v6e-4,1,tpu-v6e-4,us-south1,us-south1-a,0,0
    ,,,tpu-v6e-4,1,tpu-v6e-4,europe-west4,europe-west4-a,0,0
    ,,,tpu-v6e-4,1,tpu-v6e-4,us-east5,us-east5-b,0,0
    ,,,tpu-v6e-8,1,tpu-v6e-8,us-south1,us-south1-a,0,0
    ,,,tpu-v6e-8,1,tpu-v6e-8,europe-west4,europe-west4-a,0,0
    ,,,tpu-v6e-8,1,tpu-v6e-8,us-east5,us-east5-b,0,0
    ,,,tpu-v6e-16,1,tpu-v6e-16,us-south1,us-south1-a,0,0
    ,,,tpu-v6e-16,1,tpu-v6e-16,europe-west4,europe-west4-a,0,0
    ,,,tpu-v6e-16,1,tpu-v6e-16,us-east5,us-east5-b,0,0
    ,,,tpu-v6e-32,1,tpu-v6e-32,us-south1,us-south1-a,0,0
    ,,,tpu-v6e-32,1,tpu-v6e-32,europe-west4,europe-west4-a,0,0
    ,,,tpu-v6e-32,1,tpu-v6e-32,us-east5,us-east5-b,0,0
    ,,,tpu-v6e-64,1,tpu-v6e-64,us-south1,us-south1-a,0,0
    ,,,tpu-v6e-64,1,tpu-v6e-64,europe-west4,europe-west4-a,0,0
    ,,,tpu-v6e-64,1,tpu-v6e-64,us-east5,us-east5-b,0,0
    ,,,tpu-v6e-128,1,tpu-v6e-128,us-south1,us-south1-a,0,0
    ,,,tpu-v6e-128,1,tpu-v6e-128,europe-west4,europe-west4-a,0,0
    ,,,tpu-v6e-128,1,tpu-v6e-128,us-east5,us-east5-b,0,0
    ,,,tpu-v6e-256,1,tpu-v6e-256,us-south1,us-south1-a,0,0
    ,,,tpu-v6e-256,1,tpu-v6e-256,europe-west4,europe-west4-a,0,0
    ,,,tpu-v6e-256,1,tpu-v6e-256,us-east5,us-east5-b,0,0
    
  2. Specify the following resources in a YAML file:

    # tpu_v6.yaml
    resources:
      accelerators: tpu-v6e-16 # Fill in the accelerator type you want to use
      accelerator_args:
        runtime_version: v2-alpha-tpuv6e # Official suggested runtime
    
  3. Launch a cluster with TPU v6e:

       sky launch tpu_v6.yaml -c tpu_v6
    
  4. Connect to the TPU v6e using SSH: ssh tpu_v6

Inference tutorials

The following tutorials show how to run inference on TPU v6e:

Training tutorials

The following sections provide tutorials for training MaxText, MaxDiffusion, and PyTorch models on TPU v6e.

MaxText and MaxDiffusion training on v6e Cloud TPU VM

The following sections cover the training lifecycle of the MaxText and MaxDiffusion models.

In general, the high-level steps are:

  1. Build the workload base image.
  2. Run your workload using XPK.
    1. Build the training command for the workload.
    2. Deploy the workload.
  3. Follow the workload and view metrics.
  4. Delete the XPK workload if it isn't needed.
  5. Delete the XPK cluster when it's no longer needed.

Build base image

Install MaxText or MaxDiffusion and build the Docker image:

  1. Clone the repository you want to use and change to the directory for the repository:

    MaxText:

    git clone https://github.com/google/maxtext.git && cd maxtext
    

    MaxDiffusion:

    git clone https://github.com/google/maxdiffusion.git && cd maxdiffusion
    
  2. Configure Docker to use the Google Cloud CLI:

    gcloud auth configure-docker
    
  3. Build the Docker image using the following command or using JAX Stable Stack. For more information about JAX Stable Stack, see Build Docker image with JAX Stable Stack.

    bash docker_build_dependency_image.sh MODE=stable JAX_VERSION=0.4.37
    
  4. If you're launching the workload from a machine that doesn't have the image built locally, upload the image:

    bash docker_upload_runner.sh CLOUD_IMAGE_NAME=${USER}_runner
    
Build a Docker image with JAX Stable Stack

You can build the MaxText and MaxDiffusion Docker images using the JAX Stable Stack base image.

JAX Stable Stack provides a consistent environment for MaxText and MaxDiffusion by bundling JAX with core packages like orbax, flax, and optax, along with a well-qualified libtpu.so that drives TPU program utilities and other essential tools. These libraries are tested to ensure compatibility and provide a stable foundation to build and run MaxText and MaxDiffusion. This eliminates potential conflicts due to incompatible package versions.

JAX Stable Stack includes a fully released and qualified libtpu.so, the core library that drives TPU program compilation, execution, and ICI network configuration. The libtpu release replaces the nightly build previously used by JAX, and ensures consistent functionality of XLA computations on TPU with PJRT-level qualification tests in HLO/StableHLO IRs.

To build the MaxText and MaxDiffusion Docker image with JAX Stable Stack, when you run the docker_build_dependency_image.sh script, set the MODEvariable to stable_stack and set the BASEIMAGE variable to the base image you want to use.

The following example specifies us-docker.pkg.dev/cloud-tpu-images/jax-stable-stack/tpu:jax0.4.37-rev1 as the base image:

bash docker_build_dependency_image.sh MODE=stable_stack
BASEIMAGE=us-docker.pkg.dev/cloud-tpu-images/jax-stable-stack/tpu:jax0.4.37-rev1

For a list of available JAX Stable Stack base images, see JAX Stable Stack images in Artifact Registry.

Run your workload using XPK

  1. Set the following environment variables if you're not using the default values set by MaxText or MaxDiffusion:

    export BASE_OUTPUT_DIR=gs://YOUR_BUCKET
    export PER_DEVICE_BATCH_SIZE=2
    export NUM_STEPS=30
    export MAX_TARGET_LENGTH=8192
  2. Build your model script. This script will be copied as a training command in a later step.

    Don't execute the model script yet.

    MaxText

    MaxText is a high performance, highly scalable, open-source LLM written in pure Python and JAX and targeting Google Cloud TPUs and GPUs for training and inference.

    JAX_PLATFORMS=tpu,cpu \
    ENABLE_PJRT_COMPATIBILITY=true \
    TPU_SLICE_BUILDER_DUMP_CHIP_FORCE=true \
    TPU_SLICE_BUILDER_DUMP_ICI=true && \
    python /deps/MaxText/train.py /deps/MaxText/configs/base.yml \
            base_output_directory=${BASE_OUTPUT_DIR} \
            dataset_type=synthetic \
            per_device_batch_size=${PER_DEVICE_BATCH_SIZE} \
            enable_checkpointing=false \
            gcs_metrics=true \
            profiler=xplane \
            skip_first_n_steps_for_profiler=5 \
            steps=${NUM_STEPS}  # attention='dot_product'"
    

    Gemma2

    Gemma is a family of open-weights LLMs developed by Google DeepMind, based on Gemini research and technology.

    python3 MaxText/train.py MaxText/configs/base.yml \
        model_name=gemma2-27b \
        run_name=gemma2-27b-run \
        base_output_directory=${BASE_OUTPUT_DIR} \
        max_target_length=${MAX_TARGET_LENGTH} \
        per_device_batch_size=${PER_DEVICE_BATCH_SIZE} \
        steps=${NUM_STEPS} \
        enable_checkpointing=false \
        use_iota_embed=true \
        gcs_metrics=true \
        dataset_type=synthetic \
        profiler=xplane \
        attention=flash
    

    Mixtral 8x7b

    Mixtral is a state-of-the-art AI model developed by Mistral AI, utilizing a sparse mixture-of-experts (MoE) architecture.

    python3 MaxText/train.py MaxText/configs/base.yml \
        base_output_directory=${BASE_OUTPUT_DIR} \
        per_device_batch_size=${PER_DEVICE_BATCH_SIZE} \
        model_name=mixtral-8x7b \
        steps=${NUM_STEPS} \
        max_target_length=${MAX_TARGET_LENGTH} \
        tokenizer_path=assets/tokenizer.mistral-v1 \
        attention=flash \
        dtype=bfloat16 \
        dataset_type=synthetic \
        profiler=xplane
    

    Llama3-8b

    Llama is a family of open-weights LLMs developed by Meta.

    python3 MaxText/train.py MaxText/configs/base.yml \
        model_name=llama3-8b \
        base_output_directory=${BASE_OUTPUT_DIR} \
        dataset_type=synthetic \
        tokenizer_path=assets/tokenizer_llama3.tiktoken \
        per_device_batch_size=${PER_DEVICE_BATCH_SIZE} # set to 4 \
        gcs_metrics=true \
        profiler=xplane \
        skip_first_n_steps_for_profiler=5 \
        steps=${NUM_STEPS} \
        max_target_length=${MAX_TARGET_LENGTH} \
        attention=flash"
    

    MaxDiffusion

    MaxDiffusion is a collection of reference implementations of various latent diffusion models written in pure Python and JAX that run on XLA devices including Cloud TPUs and GPUs. Stable Diffusion is a latent text-to-image model that generates photo-realistic images from any text input.

    You need to install a specific Git branch to run MaxDiffusion as shown in the following git checkout command.

    git clone https://github.com/google/maxdiffusion.git
    && cd maxdiffusion
    && git checkout e712c9fc4cca764b0930067b6e33daae2433abf0
    && pip install -r requirements.txt
    && pip install .
    

    Training script:

        cd maxdiffusion && OUT_DIR=${BASE_OUTPUT_DIR} \
        python src/maxdiffusion/train_sdxl.py \
        src/maxdiffusion/configs/base_xl.yml \
        revision=refs/pr/95 \
        activations_dtype=bfloat16 \
        weights_dtype=bfloat16 \
        resolution=1024 \
        per_device_batch_size=1 \
        output_dir=${OUT_DIR}  \
        jax_cache_dir=${OUT_DIR}/cache_dir/ \
        max_train_steps=200 \
        attention=flash run_name=sdxl-ddp-v6e
    
        
  3. Run the model using the script you created in the previous step. You must either specify the --base-docker-image flag to use the MaxText base image or specify the --docker-image flag and the image you want to use.

    Optional: You can enable debug logging by including the --enable-debug-logs flag. For more information, see Debug JAX on MaxText.

    Optional: you can create a Vertex AI Experiment to upload data to Vertex AI TensorBoard by including the --use-vertex-tensorboard flag. For more information, see Monitor JAX on MaxText using Vertex AI.

    python3 xpk.py workload create \
        --cluster CLUSTER_NAME \
        {--base-docker-image maxtext_base_image|--docker-image ${CLOUD_IMAGE_NAME}} \
        --workload ${USER}-xpk-$ACCELERATOR_TYPE-$NUM_SLICES \
        --tpu-type=$ACCELERATOR_TYPE \
        --num-slices=$NUM_SLICES  \
        --on-demand \
        --zone $ZONE \
        --project $PROJECT_ID \
        [--enable-debug-logs] \
        [--use-vertex-tensorboard] \
        --command $YOUR-MODEL-SCRIPT

    Export the following variables:

    export ClUSTER_NAME=CLUSTER_NAME: The name of your XPK cluster. export ACCELERATOR_TYPEACCELERATOR_TYPE: The version and size of your TPU. For example, v6e-256. export NUM_SLICES=NUM_SLICES: The number of TPU slices. export YOUR_MODEL_SCRIPT=YOUR_MODEL_SCRIPT: The model script to execute as a training command.

    The output includes a link to follow your workload, similar to the following:

    [XPK] Follow your workload here: https://console.cloud.google.com/kubernetes/service/zone/project_id/default/workload_name/details?project=project_id
    

    Open the link and click the Logs tab to track your workload in real time.

Debug JAX on MaxText

Use supplemental XPK commands to diagnose why the cluster or workload isn't running.

Monitor JAX on MaxText using Vertex AI

View scalar and profile data through Vertex AI's managed TensorBoard.

  1. Increase resource management (CRUD) requests for the zone you're using from 600 to 5000. This might not be an issue for small workloads using less than 16 VMs.
  2. Install dependencies such as cloud-accelerator-diagnostics for Vertex AI:

    # xpk dependencies will install cloud-accelerator-diagnostics for Vertex AI
    cd ~/xpk
    pip install .
  3. Create your XPK cluster using the --create-vertex-tensorboard flag, as documented in Create Vertex AI TensorBoard. You can also run this command on existing clusters.

  4. Create your Vertex AI experiment when running your XPK workload using the --use-vertex-tensorboard flag and the optional --experiment-name flag. For the full list of steps, see Create Vertex AI Experiment to upload data to Vertex AI TensorBoard.

The logs include a link to a Vertex AI TensorBoard, similar to the following:

View your TensorBoard at https://us-central1.tensorboard.googleusercontent.com/experiment/project_id+locations+us-central1+tensorboards+hash+experiments+name

You can also find the Vertex AI TensorBoard link in the Google Cloud console. Go to Vertex AI Experiments in the Google Cloud console. Select the appropriate region from the drop-down.

The TensorBoard directory is also written to the Cloud Storage bucket that you specified with ${BASE_OUTPUT_DIR}.

Delete XPK workloads

Use the xpk workload delete command to delete one or more workloads based on the job prefix or job status. This command might be useful if you sent XPK workloads that no longer need to be run, or if you have jobs that are stuck in the queue.

Delete XPK cluster

Use the xpk cluster delete command to delete a cluster:

python3 xpk.py cluster delete --cluster ${CLUSTER_NAME} \
--zone $ZONE --project $PROJECT_ID

Llama and PyTorch/XLA training on v6e Cloud TPU VM

This tutorial describes how to train Llama models using PyTorch/XLA on TPU v6e using the WikiText dataset.

Get access to Hugging Face and the Llama 3 model

You need a Hugging Face user access token to run this tutorial. For information about creating and user access tokens, see the Hugging Face documentation on user access tokens.

You also need permission to access the Llama 3 8B model on Hugging Face. To get access, go to the Meta-Llama-3-8B model on Hugging Face and request access.

Create a TPU VM

Create a TPU v6e with 8 chips to run the tutorial.

  1. Set up environment variables:

    export ACCELERATOR_TYPE=v6e-8
    export VERSION=v2-alpha-tpuv6e
    export TPU_NAME=$USER-$ACCELERATOR_TYPE
    export PROJECT=YOUR_PROJECT
    export ZONE=YOUR_ZONE
  2. Create a TPU VM:

    gcloud alpha compute tpus tpu-vm create $TPU_NAME --version=$VERSION \
        --accelerator-type=$ACCELERATOR_TYPE --zone=$ZONE --project=$PROJECT

Installation

Install the pytorch-tpu/transformers fork of Hugging Face Transformers and dependencies. This tutorial was tested with the following dependency versions used in this example:

  • torch: compatible with 2.5.0
  • torch_xla[tpu]: compatible with 2.5.0
  • jax: 0.4.33
  • jaxlib: 0.4.33
gcloud alpha compute tpus tpu-vm ssh $TPU_NAME --project=$PROJECT --zone $ZONE \
    --worker=all --command='git clone -b flash_attention https://github.com/pytorch-tpu/transformers.git
    cd transformers
    sudo pip3 install -e .
    pip3 install datasets
    pip3 install evaluate
    pip3 install scikit-learn
    pip3 install accelerate
    pip install torch~=2.5.0 torch_xla[tpu]~=2.5.0 -f https://storage.googleapis.com/libtpu-releases/index.html -f https://storage.googleapis.com/libtpu-wheels/index.html
    pip install jax==0.4.33 jaxlib==0.4.33 -f https://storage.googleapis.com/jax-releases/jax_nightly_releases.html -f https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html'

Set up model configs

The training command in the next section, Run the model, uses two JSON config files to define model parameters and FSDP (Fully Sharded Data Parallel) configuration. FSDP sharding is used for the model weights to fit a bigger batch size while training. When training with smaller models, it might be sufficient to use data parallelism and replicate the weights on each device. For more information about how to shard tensors across devices in PyTorch/XLA, see PyTorch/XLA SPMD User Guide.

  1. Create the model parameter config file. The following is the model parameter config for Llama3-8B. For other models, find the config on Hugging Face. For example, see the Llama2-7B config.

    cat > llama-config.json <
    {
        "architectures": [
            "LlamaForCausalLM"
        ],
        "attention_bias": false,
        "attention_dropout": 0.0,
        "bos_token_id": 128000,
        "eos_token_id": 128001,
        "hidden_act": "silu",
        "hidden_size": 4096,
        "initializer_range": 0.02,
        "intermediate_size": 14336,
        "max_position_embeddings": 8192,
        "model_type": "llama",
        "num_attention_heads": 32,
        "num_hidden_layers": 32,
        "num_key_value_heads": 8,
        "pretraining_tp": 1,
        "rms_norm_eps": 1e-05,
        "rope_scaling": null,
        "rope_theta": 500000.0,
        "tie_word_embeddings": false,
        "torch_dtype": "bfloat16",
        "transformers_version": "4.40.0.dev0",
        "use_cache": false,
        "vocab_size": 128256
    }
    EOF
  2. Create the FSDP config file:

    cat > fsdp-config.json <
    {
        "fsdp_transformer_layer_cls_to_wrap": [
            "LlamaDecoderLayer"
        ],
        "xla": true,
        "xla_fsdp_v2": true,
        "xla_fsdp_grad_ckpt": true
    }
    EOF

    For more information about FSDP, see FSDPv2.

  3. Upload the config files to your TPU VMs using the following command:

    gcloud alpha compute tpus tpu-vm scp llama-config.json fsdp-config.json $TPU_NAME:. \
        --worker=all \
        --project=$PROJECT \
        --zone $ZONE

Run the model

Using the config files you created in the previous section, run the run_clm.py script to train the Llama 3 8B model on the WikiText dataset. The training script takes approximately 10 minutes to run on a TPU v6e-8.

  1. Log in to Hugging Face on your TPU using the following command:

    gcloud alpha compute tpus tpu-vm ssh $TPU_NAME --project=$PROJECT \
        --zone $ZONE \
        --worker=all \
        --command='
        pip3 install "huggingface_hub[cli]"
        huggingface-cli login --token HUGGING_FACE_TOKEN'
  2. Run the model training:

    gcloud alpha compute tpus tpu-vm ssh $TPU_NAME --project=$PROJECT \
        --zone $ZONE \
        --worker=all \
        --command='
        export PJRT_DEVICE=TPU
        export XLA_USE_SPMD=1
        export ENABLE_PJRT_COMPATIBILITY=true
            # Optional variables for debugging:
        export XLA_IR_DEBUG=1
        export XLA_HLO_DEBUG=1
        export PROFILE_EPOCH=0
        export PROFILE_STEP=3
        export PROFILE_DURATION_MS=100000
            # Set PROFILE_LOGDIR to a local VM path or gs://my-bucket/profile_path
        export PROFILE_LOGDIR=PROFILE_PATH
        python3 transformers/examples/pytorch/language-modeling/run_clm.py \
        --dataset_name wikitext \
        --dataset_config_name wikitext-2-raw-v1 \
        --per_device_train_batch_size 16 \
        --do_train \
        --output_dir /home/$USER/tmp/test-clm \
        --overwrite_output_dir \
        --config_name /home/$USER/llama-config.json \
        --cache_dir /home/$USER/cache \
        --tokenizer_name meta-llama/Meta-Llama-3-8B \
        --block_size 8192 \
        --optim adafactor \
        --save_strategy no \
        --logging_strategy no \
        --fsdp "full_shard" \
        --fsdp_config /home/$USER/fsdp-config.json \
        --torch_dtype bfloat16 \
        --dataloader_drop_last yes \
        --flash_attention \
        --max_steps 20'

Troubleshooting PyTorch/XLA

If you set the optional variables for debugging in the previous section, the profile for the model will be stored at the location specified by the variable PROFILE_LOGDIR. You can extract the xplane.pb file stored at this location and use tensorboard to view the profiles in your browser using the TensorBoard instructions If PyTorch/XLA isn't performing as expected, see the troubleshooting guide, which has suggestions for debugging, profiling, and optimizing your model.

DLRM DCN v2 training on v6e

This tutorial shows you how to train the DLRM DCN v2 model on TPU v6e. You need to Provision a TPU v6e with 64, 128, or 256 chips.

If you are running on multi-host, reset tpu-runtime with the appropriate TensorFlow version by running the following command. If you are running on single host, you don't need to run the following two commands.

gcloud alpha compute tpus tpu-vm ssh ${TPU_NAME}  --project ${PROJECT_ID}
--zone  ${ZONE} --worker=all \
--command="sudo sed -i 's/TF_DOCKER_URL=.*/TF_DOCKER_URL=gcr.io\/cloud-tpu-v2-images\/grpc_tpu_worker:v6e\"/' /etc/systemd/system/tpu-runtime.service"

gcloud alpha compute tpus tpu-vm ssh ${TPU_NAME}  --project ${PROJECT_ID} \
 --zone  ${ZONE}   \
 --worker=all \
 --command='sudo systemctl daemon-reload && sudo systemctl restart tpu-runtime'

SSH into worker-0

gcloud alpha compute tpus tpu-vm ssh ${TPU_NAME} --zone ${ZONE} --project {$PROJECT_ID}

Set the TPU name

export TPU_NAME=${TPU_NAME}

Run DLRM v2

pip install --user setuptools==65.5.0

pip install cloud-tpu-client

pip install gin-config && pip install tensorflow-datasets && pip install tf-keras-nightly --no-deps

pip install https://storage.googleapis.com/tensorflow-public-build-artifacts/prod/tensorflow/official/release/nightly/linux_x86_tpu/wheel_py310/749/20240915-062017/github/tensorflow/build_output/tf_nightly_tpu-2.18.0.dev20240915-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl -f https://storage.googleapis.com/libtpu-tf-releases/index.html --force

git clone https://github.com/tensorflow/recommenders.git
git clone https://github.com/tensorflow/models.git

export PYTHONPATH=~/recommenders/:~/models/
export TF_XLA_FLAGS='--tf_mlir_enable_mlir_bridge=true --tf_xla_sparse_core_disable_table_stacking=true --tf_mlir_enable_convert_control_to_data_outputs_pass=true --tf_mlir_enable_merge_control_flow_pass=true'

TF_USE_LEGACY_KERAS=1 TPU_LOAD_LIBRARY=0 python3 ./models/official/recommendation/ranking/train.py  --mode=train     --model_dir=gs://ptxla-debug/tf/sc/dlrm/runs/2/ --params_override="
runtime:
  distribution_strategy: tpu
  mixed_precision_dtype: 'mixed_bfloat16'
task:
  use_synthetic_data: false
  use_tf_record_reader: true
  train_data:
    input_path: 'gs://trillium-datasets/criteo/train/day_*/*'
    global_batch_size: 16384
    use_cached_data: true
  validation_data:
    input_path: 'gs://trillium-datasets/criteo/eval/day_*/*'
    global_batch_size: 16384
    use_cached_data: true
  model:
    num_dense_features: 13
    bottom_mlp: [512, 256, 128]
    embedding_dim: 128
    interaction: 'multi_layer_dcn'
    dcn_num_layers: 3
    dcn_low_rank_dim: 512
    size_threshold: 8000
    top_mlp: [1024, 1024, 512, 256, 1]
    use_multi_hot: true
    concat_dense: false
    dcn_use_bias: true
    vocab_sizes: [40000000,39060,17295,7424,20265,3,7122,1543,63,40000000,3067956,405282,10,2209,11938,155,4,976,14,40000000,40000000,40000000,590152,12973,108,36]
    multi_hot_sizes: [3,2,1,2,6,1,1,1,1,7,3,8,1,6,9,5,1,1,1,12,100,27,10,3,1,1]
    max_ids_per_chip_per_sample: 128
    max_ids_per_table: [280, 128, 64, 272, 432, 624, 64, 104, 368, 352, 288, 328, 304, 576, 336, 368, 312, 392, 408, 552, 2880, 1248, 720, 112, 320, 256]
    max_unique_ids_per_table: [104, 56, 40, 32, 72, 32, 40, 32, 32, 144, 64, 192, 32, 40, 136, 32, 32, 32, 32, 240, 1352, 432, 120, 80, 32, 32]
    use_partial_tpu_embedding: false
    size_threshold: 0
    initialize_tables_on_host: true
trainer:
  train_steps: 10000
  validation_interval: 1000
  validation_steps: 660
  summary_interval: 1000
  steps_per_loop: 1000
  checkpoint_interval: 0
  optimizer_config:
    embedding_optimizer: 'Adagrad'
    dense_optimizer: 'Adagrad'
    lr_config:
      decay_exp: 2
      decay_start_steps: 70000
      decay_steps: 30000
      learning_rate: 0.025
      warmup_steps: 0
    dense_sgd_config:
      decay_exp: 2
      decay_start_steps: 70000
      decay_steps: 30000
      learning_rate: 0.00025
      warmup_steps: 8000
  train_tf_function: true
  train_tf_while_loop: true
  eval_tf_while_loop: true
  use_orbit: true
  pipeline_sparse_and_dense_execution: true"

Run script.sh:

chmod +x script.sh
./script.sh
pip install https://storage.googleapis.com/tensorflow-public-build-artifacts/prod/tensorflow/official/release/nightly/linux_x86_tpu/wheel_py310/749/20240915-062017/github/tensorflow/build_output/tf_nightly_tpu-2.18.0.dev20240915-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl \
-f https://storage.googleapis.com/libtpu-tf-releases/index.html --force

The following flags are necessary to run recommendation workloads (DLRM DCN):

ENV TF_XLA_FLAGS='--tf_mlir_enable_mlir_bridge=true \
--tf_mlir_enable_tpu_variable_runtime_reformatting_pass=false \
--tf_mlir_enable_convert_control_to_data_outputs_pass=true \
--tf_mlir_enable_merge_control_flow_pass=true --tf_xla_disable_full_embedding_pipelining=true' \
ENV LIBTPU_INIT_ARGS="--xla_sc_splitting_along_feature_dimension=auto \
--copy_with_dynamic_shape_op_output_pjrt_buffer=true"

Benchmarking results

The following section contains benchmarking results for DLRM DCN v2 and MaxDiffusion on v6e.

DLRM DCN v2

The DLRM DCN v2 training script was run at different scales. See the throughputs in the following table.

v6e-64 v6e-128 v6e-256
Training steps 7000 7000 7000
Global batch size 131072 262144 524288
Throughput (examples/sec) 2975334 5111808 10066329

MaxDiffusion

We ran the training script for MaxDiffusion on a v6e-4, a v6e-16, and a 2xv6e-16. See the throughputs in the following table.

v6e-4 v6e-16 Two v6e-16
Training steps 0.069 0.073 0.13
Global batch size 8 32 64
Throughput (examples/sec) 115.9 438.4 492.3

Collection scheduling

Trillium (v6e) includes a new feature called "collection scheduling". This feature offers a way to manage multiple TPU slices running a single-host inference workload on both GKE and the Cloud TPU API. Grouping these slices into a collection makes it easy to adjust the number of replicas to match the demand. Software updates are carefully controlled to ensure that a portion of slices within the collection is always available to handle incoming traffic.

See the GKE documentation for more information about using collection scheduling with GKE.

The collection scheduling feature only applies to v6e.

Use collection scheduling from the Cloud TPU API

A single-host collection on the Cloud TPU API is a queued resource on which a special flag (--workload-type = availability-optimized) is set to indicate to underlying infrastructure that it is meant to be used for serving workloads.

The following command provisions a single-host collection using the Cloud TPU API:

gcloud alpha compute tpus queued-resources create my-collection \
   --project=$PROJECT_ID \
   --zone=${ZONE} \
   --accelerator-type $ACCELERATOR_TYPE \
   --node-count ${NODE_COUNT} \
   --workload-type=availability-optimized

Monitor and profile

Cloud TPU v6e supports monitoring and profiling using the same methods as previous generations of Cloud TPU. For more information about monitoring, see Monitor TPU VMs.