En este instructivo, se muestra cómo escalar de forma vertical el entrenamiento de tu modelo desde una sola Cloud TPU (v2-8 o v3-8) a un pod de Cloud TPU con la configuración de nodo TPU. Los aceleradores de Cloud TPU en un pod de TPU están conectados por interconexiones de ancho de banda alto, por lo que son eficientes para escalar verticalmente los trabajos de entrenamiento.
Para obtener más información sobre la oferta de pods de Cloud TPU, consulta la página de productos de Cloud TPU o esta presentación de Cloud TPU.
En el siguiente diagrama, se proporciona una descripción general de la configuración del clúster distribuido. Un grupo de instancias de VM está conectado a un pod de TPU. Se necesita una VM para cada grupo de 8 núcleos de TPU. Las VM envían datos a los núcleos de la TPU y todo el entrenamiento se produce en el pod de TPU.
Objetivos
- Configura un grupo de instancias de Compute Engine y el pod de Cloud TPU para entrenar con PyTorch/XLA
- Ejecuta el entrenamiento PyTorch/XLA en un pod de Cloud TPU.
Antes de comenzar
Antes de comenzar el entrenamiento distribuido en los pods de Cloud TPU, verifica que tu modelo entrene en un solo dispositivo de Cloud TPU v2-8 o v3-8. Si tu modelo tiene problemas de rendimiento significativos en un solo dispositivo, consulta las guías sobre prácticas recomendadas y solución de problemas.
Una vez que tu único dispositivo de TPU se haya entrenado con éxito, realiza los siguientes pasos para configurar y entrenar en un pod de Cloud TPU:
Captura una imagen de disco de VM en una imagen de VM (opcional).
Crea una plantilla de instancias a partir de una imagen de VM.
Crea un grupo de instancias a partir de tu plantilla de instancias.
Verifica las reglas del firewall para permitir la comunicación entre VM.
Configura el comando gcloud
Configura tu proyecto de Google Cloud con gcloud
:
Crea una variable para el ID de tu proyecto.
export PROJECT_ID=project-id
Configura el ID del proyecto como el proyecto predeterminado en gcloud
gcloud config set project ${PROJECT_ID}
La primera vez que ejecutes este comando en una VM de Cloud Shell nueva, se mostrará la página Authorize Cloud Shell
. Haz clic en Authorize
en la parte inferior de la página para permitir que gcloud
realice llamadas a la API con tus credenciales.
Configura la zona predeterminada con gcloud
:
gcloud config set compute/zone europe-west4-a
Captura una imagen de disco de VM (opcional)
Puedes usar la imagen de disco de la VM que usaste para entrenar la única TPU (que ya tiene el conjunto de datos, los paquetes instalados, etc.). Antes de crear una imagen, detén la VM con el comando gcloud
:
gcloud compute instances stop vm-name
A continuación, crea una imagen de VM con el comando gcloud
:
gcloud compute images create image-name \ --source-disk instance-name \ --source-disk-zone europe-west4-a \ --family=torch-xla \ --storage-location europe-west4
Crea una plantilla de instancias a partir de una imagen de VM
Crea una plantilla de instancias predeterminada. Cuando estás creando una plantilla de instancias, puedes usar la imagen de VM que creaste en el paso anterior O puedes usar la imagen pública de PyTorch/XLA que proporciona Google. Para crear una plantilla de instancias, usa el comando gcloud
:
gcloud compute instance-templates create instance-template-name \ --machine-type n1-standard-16 \ --image-project=${PROJECT_ID} \ --image=image-name \ --scopes=https://www.googleapis.com/auth/cloud-platform
Crea un grupo de instancias a partir de tu plantilla de instancias
gcloud compute instance-groups managed create instance-group-name \ --size 4 \ --template template-name \ --zone europe-west4-a
Establece una conexión SSH en tu VM de Compute Engine
Después de crear tu grupo de instancias, establece una conexión SSH en una de las instancias (VM) de tu grupo. Usa el siguiente comando para enumerar todas las instancias en tu grupo de instancias y el comando gcloud
:
gcloud compute instance-groups list-instances instance-group-name
Establece una conexión SSH con una de las instancias enumeradas desde el comando list-instances
.
gcloud compute ssh instance-name --zone=europe-west4-a
Verifica que las VM de tu grupo de instancias puedan comunicarse entre sí
Usa el comando nmap
para verificar que las VM de tu grupo de instancias puedan comunicarse entre sí. Ejecuta el comando nmap
desde la VM a la que estás conectado y reemplaza instance-name por el nombre de instancia de otra VM en tu grupo de instancias.
(vm)$ nmap -Pn -p 8477 instance-name
Starting Nmap 7.40 ( https://nmap.org ) at 2019-10-02 21:35 UTC Nmap scan report for pytorch-20190923-n4tx.c.jysohntpu.internal (10.164.0.3) Host is up (0.00034s latency). PORT STATE SERVICE 8477/tcp closed unknown
Mientras el campo STATE no diga filtrado, las reglas del firewall están configuradas de forma correcta.
Crea un pod de Cloud TPU
gcloud compute tpus create tpu-name \ --zone=europe-west4-a \ --network=default \ --accelerator-type=v2-32 \ --version=pytorch-1.13
Ejecuta el entrenamiento distribuido en el pod
En la ventana de sesión de VM, exporta el nombre de Cloud TPU y activa el entorno conda.
(vm)$ export TPU_NAME=tpu-name
(vm)$ conda activate torch-xla-1.13
Ejecuta la siguiente secuencia de comandos de entrenamiento:
(torch-xla-1.13)$ python -m torch_xla.distributed.xla_dist \ --tpu=$TPU_NAME \ --conda-env=torch-xla-1.13 \ --env XLA_USE_BF16=1 \ --env ANY_OTHER=ENV_VAR \ -- python /usr/share/torch-xla-1.13/pytorch/xla/test/test_train_mp_imagenet.py \ --fake_data
Una vez que ejecutes el comando anterior, deberías ver un resultado similar al siguiente (ten en cuenta que esto es mediante --fake_data
). El entrenamiento tarda alrededor de media hora en un pod de TPU v3-32.
2020-08-06 02:38:29 [] Command to distribute: "python" "/usr/share/torch-xla-nightly/pytorch/xla/test/test_train_mp_imagenet.py" "--fake_data" 2020-08-06 02:38:29 [] Cluster configuration: {client_workers: [{10.164.0.43, n1-standard-96, europe-west4-a, my-instance-group-hm88}, {10.164.0.109, n1-standard-96, europe-west4-a, my-instance-group-n3q2}, {10.164.0.46, n1-standard-96, europe-west4-a, my-instance-group-s0xl}, {10.164.0.49, n1-standard-96, europe-west4-a, my-instance-group-zp14}], service_workers: [{10.131.144.61, 8470, v3-32, europe-west4-a, pytorch-nightly, my-tpu-slice}, {10.131.144.59, 8470, v3-32, europe-west4-a, pytorch-nightly, my-tpu-slice}, {10.131.144.58, 8470, v3-32, europe-west4-a, pytorch-nightly, my-tpu-slice}, {10.131.144.60, 8470, v3-32, europe-west4-a, pytorch-nightly, my-tpu-slice}]} 2020-08-06 02:38:31 10.164.0.43 [0] % Total % Received % Xferd Average Speed Time Time Time Current 2020-08-06 02:38:31 10.164.0.43 [0] Dload Upload Total Spent Left Speed 100 19 100 19 0 0 2757 0 --:--:-- --:--:-- --:--:-- 3166 2020-08-06 02:38:34 10.164.0.43 [0] % Total % Received % Xferd Average Speed Time Time Time Current 2020-08-06 02:38:34 10.164.0.43 [0] Dload Upload Total Spent Left Speed 100 19 100 19 0 0 2623 0 --:--:-- --:--:-- --:--:-- 2714 2020-08-06 02:38:37 10.164.0.46 [2] % Total % Received % Xferd Average Speed Time Time Time Current 2020-08-06 02:38:37 10.164.0.46 [2] Dload Upload Total Spent Left Speed 100 19 100 19 0 0 2583 0 --:--:-- --:--:-- --:--:-- 2714 2020-08-06 02:38:37 10.164.0.49 [3] % Total % Received % Xferd Average Speed Time Time Time Current 2020-08-06 02:38:37 10.164.0.49 [3] Dload Upload Total Spent Left Speed 100 19 100 19 0 0 2530 0 --:--:-- --:--:-- --:--:-- 2714 2020-08-06 02:38:37 10.164.0.109 [1] % Total % Received % Xferd Average Speed Time Time Time Current 2020-08-06 02:38:37 10.164.0.109 [1] Dload Upload Total Spent Left Speed 100 19 100 19 0 0 2317 0 --:--:-- --:--:-- --:--:-- 2375 2020-08-06 02:38:40 10.164.0.46 [2] % Total % Received % Xferd Average Speed Time Time Time Current 2020-08-06 02:38:40 10.164.0.49 [3] % Total % Received % Xferd Average Speed Time Time Time Current 2020-08-06 02:38:40 10.164.0.46 [2] Dload Upload Total Spent Left Speed 2020-08-06 02:38:40 10.164.0.49 [3] Dload Upload Total Spent Left Speed 100 19 100 19 0 0 2748 0 --:--:-- --:--:-- --:--:-- 3166 100 19 100 19 0 0 2584 0 --:--:-- --:--:-- --:--:-- 2714 2020-08-06 02:38:40 10.164.0.109 [1] % Total % Received % Xferd Average Speed Time Time Time Current 2020-08-06 02:38:40 10.164.0.109 [1] Dload Upload Total Spent Left Speed 100 19 100 19 0 0 2495 0 --:--:-- --:--:-- --:--:-- 2714 2020-08-06 02:38:43 10.164.0.49 [3] % Total % Received % Xferd Average Speed Time Time Time Current 2020-08-06 02:38:43 10.164.0.49 [3] Dload Upload Total Spent Left Speed 100 19 100 19 0 0 2654 0 --:--:-- --:--:-- --:--:-- 2714 2020-08-06 02:38:43 10.164.0.43 [0] % Total % Received % Xferd Average Speed Time Time Time Current 2020-08-06 02:38:43 10.164.0.43 [0] Dload Upload Total Spent Left Speed 100 19 100 19 0 0 2784 0 --:--:-- --:--:-- --:--:-- 3166 2020-08-06 02:38:43 10.164.0.46 [2] % Total % Received % Xferd Average Speed Time Time Time Current 2020-08-06 02:38:43 10.164.0.46 [2] Dload Upload Total Spent Left Speed 100 19 100 19 0 0 2691 0 --:--:-- --:--:-- --:--:-- 3166 2020-08-06 02:38:43 10.164.0.109 [1] % Total % Received % Xferd Average Speed Time Time Time Current 2020-08-06 02:38:43 10.164.0.109 [1] Dload Upload Total Spent Left Speed 100 19 100 19 0 0 2589 0 --:--:-- --:--:-- --:--:-- 2714 2020-08-06 02:38:57 10.164.0.109 [1] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.109 [1] | Training Device=xla:0/14 Epoch=1 Step=0 Loss=6.87500 Rate=258.47 GlobalRate=258.47 Time=02:38:57 2020-08-06 02:38:57 10.164.0.109 [1] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.109 [1] | Training Device=xla:0/15 Epoch=1 Step=0 Loss=6.87500 Rate=149.45 GlobalRate=149.45 Time=02:38:57 2020-08-06 02:38:57 10.164.0.43 [0] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.43 [0] Epoch 1 train begin 02:38:52 2020-08-06 02:38:57 10.164.0.43 [0] | Training Device=xla:1/0 Epoch=1 Step=0 Loss=6.87500 Rate=25.72 GlobalRate=25.72 Time=02:38:57 2020-08-06 02:38:57 10.164.0.43 [0] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.43 [0] | Training Device=xla:0/6 Epoch=1 Step=0 Loss=6.87500 Rate=89.01 GlobalRate=89.01 Time=02:38:57 2020-08-06 02:38:57 10.164.0.43 [0] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.43 [0] | Training Device=xla:0/1 Epoch=1 Step=0 Loss=6.87500 Rate=64.15 GlobalRate=64.15 Time=02:38:57 2020-08-06 02:38:57 10.164.0.43 [0] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.43 [0] | Training Device=xla:0/2 Epoch=1 Step=0 Loss=6.87500 Rate=93.19 GlobalRate=93.19 Time=02:38:57 2020-08-06 02:38:57 10.164.0.43 [0] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.43 [0] | Training Device=xla:0/7 Epoch=1 Step=0 Loss=6.87500 Rate=58.78 GlobalRate=58.78 Time=02:38:57 2020-08-06 02:38:57 10.164.0.109 [1] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.109 [1] Epoch 1 train begin 02:38:56 2020-08-06 02:38:57 10.164.0.109 [1] | Training Device=xla:1/8 Epoch=1 Step=0 Loss=6.87500 Rate=100.43 GlobalRate=100.43 Time=02:38:57 2020-08-06 02:38:57 10.164.0.109 [1] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.109 [1] | Training Device=xla:0/13 Epoch=1 Step=0 Loss=6.87500 Rate=66.83 GlobalRate=66.83 Time=02:38:57 2020-08-06 02:38:57 10.164.0.109 [1] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.109 [1] | Training Device=xla:0/11 Epoch=1 Step=0 Loss=6.87500 Rate=64.28 GlobalRate=64.28 Time=02:38:57 2020-08-06 02:38:57 10.164.0.109 [1] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.109 [1] | Training Device=xla:0/10 Epoch=1 Step=0 Loss=6.87500 Rate=73.17 GlobalRate=73.17 Time=02:38:57 2020-08-06 02:38:57 10.164.0.109 [1] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.109 [1] | Training Device=xla:0/9 Epoch=1 Step=0 Loss=6.87500 Rate=27.29 GlobalRate=27.29 Time=02:38:57 2020-08-06 02:38:57 10.164.0.109 [1] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.109 [1] | Training Device=xla:0/12 Epoch=1 Step=0 Loss=6.87500 Rate=110.29 GlobalRate=110.29 Time=02:38:57 2020-08-06 02:38:57 10.164.0.46 [2] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.46 [2] | Training Device=xla:0/20 Epoch=1 Step=0 Loss=6.87500 Rate=100.85 GlobalRate=100.85 Time=02:38:57 2020-08-06 02:38:57 10.164.0.46 [2] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.46 [2] | Training Device=xla:0/22 Epoch=1 Step=0 Loss=6.87500 Rate=93.52 GlobalRate=93.52 Time=02:38:57 2020-08-06 02:38:57 10.164.0.46 [2] ==> Preparing data.. 2020-08-06 02:38:57 10.164.0.46 [2] | Training Device=xla:0/23 Epoch=1 Step=0 Loss=6.87500 Rate=165.86 GlobalRate=165.86 Time=02:38:57
Realiza una limpieza
Para evitar que se apliquen cargos a tu cuenta de Google Cloud por los recursos usados en este instructivo, borra el proyecto que contiene los recursos o conserva el proyecto y borra los recursos individuales.
Desconéctate de la VM de Compute Engine:
(vm)$ exit
Borra tu grupo de instancias:
gcloud compute instance-groups managed delete instance-group-name
Borra el pod de TPU:
gcloud compute tpus delete ${TPU_NAME} --zone=europe-west4-a
Borra la plantilla del grupo de instancias:
gcloud compute instance-templates delete instance-template-name
Borra la imagen de disco de VM (opcional):
gcloud compute images delete image-name
¿Qué sigue?
Prueba los siguientes colaboradores de PyTorch:
- Comienza a usar PyTorch en Cloud TPU
- Entrenamiento de MNIST en TPU
- Entrenamiento de ResNet18 en TPU con el conjunto de datos de Cifar10
- Inferencia con el modelo ResNet50 previamente entrenado
- Transferencia de estilo neuronal rápida
- Capacitación de varios núcleos de AlexCre en Fashion MNIST
- Capacitación de núcleo único de AlexNet en Fashion MNIST