Audio mit Sprachaktivitätsereignissen transkribieren

In diesem Beispiel wird gezeigt, wie Audio aus einer Datei in Text transkribiert und Sprachaktivitätsereignisse wie der Beginn oder das Ende der Sprache erkannt werden.

Codebeispiel

Python

Informationen zum Installieren und Verwenden der Clientbibliothek für Speech-to-Text finden Sie unter Speech-to-Text-Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Speech-to-Text Python API.

Richten Sie zur Authentifizierung bei Speech-to-Text Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import os

from google.cloud.speech_v2 import SpeechClient
from google.cloud.speech_v2.types import cloud_speech

PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")


def transcribe_streaming_voice_activity_events(
    audio_file: str,
) -> cloud_speech.StreamingRecognizeResponse:
    """Transcribes audio from a file into text and detects voice activity
        events using Google Cloud Speech-to-Text API.
    Args:
        audio_file (str): Path to the local audio file to be transcribed.
            Example: "resources/audio.wav"
    Returns:
        list[cloud_speech.StreamingRecognizeResponse]: A list of `StreamingRecognizeResponse` objects.
    """
    # Instantiates a client
    client = SpeechClient()

    # Reads a file as bytes
    with open(audio_file, "rb") as file:
        audio_content = file.read()

    # In practice, stream should be a generator yielding chunks of audio data
    chunk_length = len(audio_content) // 5
    stream = [
        audio_content[start : start + chunk_length]
        for start in range(0, len(audio_content), chunk_length)
    ]
    audio_requests = (
        cloud_speech.StreamingRecognizeRequest(audio=audio) for audio in stream
    )

    recognition_config = cloud_speech.RecognitionConfig(
        auto_decoding_config=cloud_speech.AutoDetectDecodingConfig(),
        language_codes=["en-US"],
        model="long",
    )

    # Sets the flag to enable voice activity events
    streaming_features = cloud_speech.StreamingRecognitionFeatures(
        enable_voice_activity_events=True
    )
    streaming_config = cloud_speech.StreamingRecognitionConfig(
        config=recognition_config, streaming_features=streaming_features
    )

    config_request = cloud_speech.StreamingRecognizeRequest(
        recognizer=f"projects/{PROJECT_ID}/locations/global/recognizers/_",
        streaming_config=streaming_config,
    )

    def requests(config: cloud_speech.RecognitionConfig, audio: list) -> list:
        yield config
        yield from audio

    # Transcribes the audio into text
    responses_iterator = client.streaming_recognize(
        requests=requests(config_request, audio_requests)
    )
    responses = []
    for response in responses_iterator:
        responses.append(response)
        if (
            response.speech_event_type
            == cloud_speech.StreamingRecognizeResponse.SpeechEventType.SPEECH_ACTIVITY_BEGIN
        ):
            print("Speech started.")
        if (
            response.speech_event_type
            == cloud_speech.StreamingRecognizeResponse.SpeechEventType.SPEECH_ACTIVITY_END
        ):
            print("Speech ended.")
        for result in response.results:
            print(f"Transcript: {result.alternatives[0].transcript}")

    return responses

Nächste Schritte

Wenn Sie nach Codebeispielen für andere Google Cloud -Produkte suchen und filtern möchten, können Sie den Google Cloud -Beispielbrowser verwenden.