Google Kubernetes Engine (GKE) 和 Service Extensions
Vertex AI
GKE 和 Service Extensions
Model Armor 可通过 Service Extensions 与 GKE 集成。借助 Service Extensions,您可以集成内部(Google Cloud 服务)或外部(用户管理的)服务来处理流量。您可以在应用负载均衡器(包括 GKE 推理网关)上配置服务扩展程序,以筛查进出 GKE 集群的流量。这可验证与 AI 模型的所有互动都受 Model Armor 保护。如需了解详情,请参阅与 GKE 集成。
Vertex AI
Model Armor 可以使用下限设置或模板直接集成到 Vertex AI 中。此集成会过滤 Gemini 模型请求和回答,并阻止违反下限设置的请求和回答。此集成功能可为 generateContent 方法提供 Vertex AI 中的 Gemini API 中的提示和回答保护。您需要启用 Cloud Logging,才能查看提示和回答的清理结果。如需了解详情,请参阅与 Vertex AI 集成。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-08-09。"],[],[],null,["# Model Armor integration with Google Cloud services\n\n| **Preview**\n|\n|\n| This feature is subject to the \"Pre-GA Offerings Terms\" in the General Service Terms section\n| of the [Service Specific Terms](/terms/service-terms#1).\n|\n| Pre-GA features are available \"as is\" and might have limited support.\n|\n| For more information, see the\n| [launch stage descriptions](/products#product-launch-stages).\n\nModel Armor integrates with various Google Cloud services:\n\n- Google Kubernetes Engine (GKE) and Service Extensions\n- Vertex AI\n\nGKE and Service Extensions\n--------------------------\n\nModel Armor can be integrated with GKE through\nService Extensions. Service Extensions allow you to integrate\ninternal (Google Cloud services) or external (user-managed) services to process\ntraffic. You can configure a service extension on application load balancers,\nincluding GKE inference gateways, to screen traffic to and from a\nGKE cluster. This verifies that all interactions with the AI models\nare protected by Model Armor. For more information, see\n[Integration with GKE](/security-command-center/docs/model-armor-gke-integration).\n\nVertex AI\n---------\n\nModel Armor can be directly integrated into Vertex AI using either\n[floor settings](/security-command-center/docs/model-armor-vertex-integration#configure-floor-settings) or\n[templates](/security-command-center/docs/model-armor-vertex-integration#configure-templates).\nThis integration screens Gemini model requests and responses, blocking\nthose that violate floor settings. This integration provides prompt and response\nprotection within Gemini API in Vertex AI for the\n`generateContent` method. You need to enable Cloud Logging to get visibility\ninto the sanitization results of prompts and responses. For more information, see\n[Integration with Vertex AI](/security-command-center/docs/model-armor-vertex-integration).\n\nBefore you begin\n----------------\n\n### Enable APIs\n\nYou must enable Model Armor APIs before you can use Model Armor. \n\n### Console\n\n1.\n\n\n Enable the Model Armor API.\n\n\n [Enable the API](https://console.cloud.google.com/flows/enableapi?apiid=modelarmor.googleapis.com)\n\n \u003cbr /\u003e\n\n2. Select the project where you want to activate Model Armor.\n\n### gcloud\n\nBefore you begin, follow these steps using the Google Cloud CLI with the\nModel Armor API:\n\n1.\n\n\n In the Google Cloud console, activate Cloud Shell.\n\n [Activate Cloud Shell](https://console.cloud.google.com/?cloudshell=true)\n\n\n At the bottom of the Google Cloud console, a\n [Cloud Shell](/shell/docs/how-cloud-shell-works)\n session starts and displays a command-line prompt. Cloud Shell is a shell environment\n with the Google Cloud CLI\n already installed and with values already set for\n your current project. It can take a few seconds for the session to initialize.\n\n \u003cbr /\u003e\n\n2. Run the following command to set the API endpoint for the\n Model Armor service.\n\n ```bash\n gcloud config set api_endpoint_overrides/modelarmor \"https://modelarmor.\u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e.rep.googleapis.com/\"\n ```\n\n Replace \u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e with the region where you want to use Model Armor.\n\nRun the following command to enable Model Armor.\n\n\u003cbr /\u003e\n\n```bash\n gcloud services enable modelarmor.googleapis.com --project=PROJECT_ID\n \n```\n\n\u003cbr /\u003e\n\nReplace \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e with the ID of the project.\n\nOptions when integrating Model Armor\n------------------------------------\n\nModel Armor offers the following integration options. Each option provides different\nfeatures and capabilities.\n\nFor the REST API integration option, Model Armor functions as a detector\nonly using templates. This means it primarily identifies and reports potential\npolicy violations based on predefined templates, rather than actively preventing\nthem.\n\nWith the Vertex AI integration option, Model Armor provides\ninline enforcement using floor settings or templates. This means\nModel Armor actively enforces policies by intervening directly\nin the process without requiring modifications to your application code.\n\nSimilar to Vertex AI, the GKE integration option also\noffers inline enforcement only using templates. This indicates that\nModel Armor can enforce policies directly within the inference gateway\nwithout requiring modifications to your application code."]]