- 0.55.0 (latest)
- 0.54.0
- 0.53.0
- 0.52.0
- 0.51.0
- 0.50.0
- 0.49.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.1
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
Reference documentation and code samples for the Vertex AI V1 API class Google::Cloud::AIPlatform::V1::UpdateModelDeploymentMonitoringJobRequest.
Request message for JobService.UpdateModelDeploymentMonitoringJob.
Inherits
- Object
Extended By
- Google::Protobuf::MessageExts::ClassMethods
Includes
- Google::Protobuf::MessageExts
Methods
#model_deployment_monitoring_job
def model_deployment_monitoring_job() -> ::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringJob
- (::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringJob) — Required. The model monitoring configuration which replaces the resource on the server.
#model_deployment_monitoring_job=
def model_deployment_monitoring_job=(value) -> ::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringJob
- value (::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringJob) — Required. The model monitoring configuration which replaces the resource on the server.
- (::Google::Cloud::AIPlatform::V1::ModelDeploymentMonitoringJob) — Required. The model monitoring configuration which replaces the resource on the server.
#update_mask
def update_mask() -> ::Google::Protobuf::FieldMask
-
(::Google::Protobuf::FieldMask) —
Required. The update mask is used to specify the fields to be overwritten in the ModelDeploymentMonitoringJob resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then only the non-empty fields present in the request will be overwritten. Set the update_mask to
*
to override all fields. For the objective config, the user can either provide the update mask for model_deployment_monitoring_objective_configs or any combination of its nested fields, such as: model_deployment_monitoring_objective_configs.objective_config.training_dataset.Updatable fields:
display_name
model_deployment_monitoring_schedule_config
model_monitoring_alert_config
logging_sampling_strategy
labels
log_ttl
enable_monitoring_pipeline_logs
. andmodel_deployment_monitoring_objective_configs
. ormodel_deployment_monitoring_objective_configs.objective_config.training_dataset
model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config
model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config
#update_mask=
def update_mask=(value) -> ::Google::Protobuf::FieldMask
-
value (::Google::Protobuf::FieldMask) —
Required. The update mask is used to specify the fields to be overwritten in the ModelDeploymentMonitoringJob resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then only the non-empty fields present in the request will be overwritten. Set the update_mask to
*
to override all fields. For the objective config, the user can either provide the update mask for model_deployment_monitoring_objective_configs or any combination of its nested fields, such as: model_deployment_monitoring_objective_configs.objective_config.training_dataset.Updatable fields:
display_name
model_deployment_monitoring_schedule_config
model_monitoring_alert_config
logging_sampling_strategy
labels
log_ttl
enable_monitoring_pipeline_logs
. andmodel_deployment_monitoring_objective_configs
. ormodel_deployment_monitoring_objective_configs.objective_config.training_dataset
model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config
model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config
-
(::Google::Protobuf::FieldMask) —
Required. The update mask is used to specify the fields to be overwritten in the ModelDeploymentMonitoringJob resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then only the non-empty fields present in the request will be overwritten. Set the update_mask to
*
to override all fields. For the objective config, the user can either provide the update mask for model_deployment_monitoring_objective_configs or any combination of its nested fields, such as: model_deployment_monitoring_objective_configs.objective_config.training_dataset.Updatable fields:
display_name
model_deployment_monitoring_schedule_config
model_monitoring_alert_config
logging_sampling_strategy
labels
log_ttl
enable_monitoring_pipeline_logs
. andmodel_deployment_monitoring_objective_configs
. ormodel_deployment_monitoring_objective_configs.objective_config.training_dataset
model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config
model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config