- 0.55.0 (latest)
- 0.54.0
- 0.53.0
- 0.52.0
- 0.51.0
- 0.50.0
- 0.49.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.1
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
Reference documentation and code samples for the Vertex AI V1 API class Google::Cloud::AIPlatform::V1::CustomJobSpec.
Represents the spec of a CustomJob. Next Id: 14
Inherits
- Object
Extended By
- Google::Protobuf::MessageExts::ClassMethods
Includes
- Google::Protobuf::MessageExts
Methods
#base_output_directory
def base_output_directory() -> ::Google::Cloud::AIPlatform::V1::GcsDestination
-
(::Google::Cloud::AIPlatform::V1::GcsDestination) —
The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob. For HyperparameterTuningJob, the baseOutputDirectory of each child CustomJob backing a Trial is set to a subdirectory of name id under its parent HyperparameterTuningJob's baseOutputDirectory.
The following Vertex AI environment variables will be passed to containers or python modules when this field is set:
For CustomJob:
- AIP_MODEL_DIR =
<base_output_directory>/model/
- AIP_CHECKPOINT_DIR =
<base_output_directory>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR =
<base_output_directory>/logs/
For CustomJob backing a Trial of HyperparameterTuningJob:
- AIP_MODEL_DIR =
<base_output_directory>/<trial_id>/model/
- AIP_CHECKPOINT_DIR =
<base_output_directory>/<trial_id>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR =
<base_output_directory>/<trial_id>/logs/
- AIP_MODEL_DIR =
#base_output_directory=
def base_output_directory=(value) -> ::Google::Cloud::AIPlatform::V1::GcsDestination
-
value (::Google::Cloud::AIPlatform::V1::GcsDestination) —
The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob. For HyperparameterTuningJob, the baseOutputDirectory of each child CustomJob backing a Trial is set to a subdirectory of name id under its parent HyperparameterTuningJob's baseOutputDirectory.
The following Vertex AI environment variables will be passed to containers or python modules when this field is set:
For CustomJob:
- AIP_MODEL_DIR =
<base_output_directory>/model/
- AIP_CHECKPOINT_DIR =
<base_output_directory>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR =
<base_output_directory>/logs/
For CustomJob backing a Trial of HyperparameterTuningJob:
- AIP_MODEL_DIR =
<base_output_directory>/<trial_id>/model/
- AIP_CHECKPOINT_DIR =
<base_output_directory>/<trial_id>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR =
<base_output_directory>/<trial_id>/logs/
- AIP_MODEL_DIR =
-
(::Google::Cloud::AIPlatform::V1::GcsDestination) —
The Cloud Storage location to store the output of this CustomJob or HyperparameterTuningJob. For HyperparameterTuningJob, the baseOutputDirectory of each child CustomJob backing a Trial is set to a subdirectory of name id under its parent HyperparameterTuningJob's baseOutputDirectory.
The following Vertex AI environment variables will be passed to containers or python modules when this field is set:
For CustomJob:
- AIP_MODEL_DIR =
<base_output_directory>/model/
- AIP_CHECKPOINT_DIR =
<base_output_directory>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR =
<base_output_directory>/logs/
For CustomJob backing a Trial of HyperparameterTuningJob:
- AIP_MODEL_DIR =
<base_output_directory>/<trial_id>/model/
- AIP_CHECKPOINT_DIR =
<base_output_directory>/<trial_id>/checkpoints/
- AIP_TENSORBOARD_LOG_DIR =
<base_output_directory>/<trial_id>/logs/
- AIP_MODEL_DIR =
#enable_web_access
def enable_web_access() -> ::Boolean
-
(::Boolean) — Optional. Whether you want Vertex AI to enable interactive shell
access
to training containers.
If set to
true
, you can access interactive shells at the URIs given by CustomJob.web_access_uris or Trial.web_access_uris (within HyperparameterTuningJob.trials).
#enable_web_access=
def enable_web_access=(value) -> ::Boolean
-
value (::Boolean) — Optional. Whether you want Vertex AI to enable interactive shell
access
to training containers.
If set to
true
, you can access interactive shells at the URIs given by CustomJob.web_access_uris or Trial.web_access_uris (within HyperparameterTuningJob.trials).
-
(::Boolean) — Optional. Whether you want Vertex AI to enable interactive shell
access
to training containers.
If set to
true
, you can access interactive shells at the URIs given by CustomJob.web_access_uris or Trial.web_access_uris (within HyperparameterTuningJob.trials).
#network
def network() -> ::String
-
(::String) — The full name of the Compute Engine
network to which the Job
should be peered. For example,
projects/12345/global/networks/myVPC
. Format is of the formprojects/{project}/global/networks/{network}
. Where {project} is a project number, as in12345
, and {network} is a network name.To specify this field, you must have already configured VPC Network Peering for Vertex AI.
If this field is left unspecified, the job is not peered with any network.
#network=
def network=(value) -> ::String
-
value (::String) — The full name of the Compute Engine
network to which the Job
should be peered. For example,
projects/12345/global/networks/myVPC
. Format is of the formprojects/{project}/global/networks/{network}
. Where {project} is a project number, as in12345
, and {network} is a network name.To specify this field, you must have already configured VPC Network Peering for Vertex AI.
If this field is left unspecified, the job is not peered with any network.
-
(::String) — The full name of the Compute Engine
network to which the Job
should be peered. For example,
projects/12345/global/networks/myVPC
. Format is of the formprojects/{project}/global/networks/{network}
. Where {project} is a project number, as in12345
, and {network} is a network name.To specify this field, you must have already configured VPC Network Peering for Vertex AI.
If this field is left unspecified, the job is not peered with any network.
#scheduling
def scheduling() -> ::Google::Cloud::AIPlatform::V1::Scheduling
- (::Google::Cloud::AIPlatform::V1::Scheduling) — Scheduling options for a CustomJob.
#scheduling=
def scheduling=(value) -> ::Google::Cloud::AIPlatform::V1::Scheduling
- value (::Google::Cloud::AIPlatform::V1::Scheduling) — Scheduling options for a CustomJob.
- (::Google::Cloud::AIPlatform::V1::Scheduling) — Scheduling options for a CustomJob.
#service_account
def service_account() -> ::String
- (::String) — Specifies the service account for workload run-as account. Users submitting jobs must have act-as permission on this run-as account. If unspecified, the Vertex AI Custom Code Service Agent for the CustomJob's project is used.
#service_account=
def service_account=(value) -> ::String
- value (::String) — Specifies the service account for workload run-as account. Users submitting jobs must have act-as permission on this run-as account. If unspecified, the Vertex AI Custom Code Service Agent for the CustomJob's project is used.
- (::String) — Specifies the service account for workload run-as account. Users submitting jobs must have act-as permission on this run-as account. If unspecified, the Vertex AI Custom Code Service Agent for the CustomJob's project is used.
#tensorboard
def tensorboard() -> ::String
-
(::String) — Optional. The name of a Vertex AI Tensorboard resource to which this CustomJob
will upload Tensorboard logs.
Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}
#tensorboard=
def tensorboard=(value) -> ::String
-
value (::String) — Optional. The name of a Vertex AI Tensorboard resource to which this CustomJob
will upload Tensorboard logs.
Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}
-
(::String) — Optional. The name of a Vertex AI Tensorboard resource to which this CustomJob
will upload Tensorboard logs.
Format:
projects/{project}/locations/{location}/tensorboards/{tensorboard}
#worker_pool_specs
def worker_pool_specs() -> ::Array<::Google::Cloud::AIPlatform::V1::WorkerPoolSpec>
- (::Array<::Google::Cloud::AIPlatform::V1::WorkerPoolSpec>) — Required. The spec of the worker pools including machine type and Docker image. All worker pools except the first one are optional and can be skipped by providing an empty value.
#worker_pool_specs=
def worker_pool_specs=(value) -> ::Array<::Google::Cloud::AIPlatform::V1::WorkerPoolSpec>
- value (::Array<::Google::Cloud::AIPlatform::V1::WorkerPoolSpec>) — Required. The spec of the worker pools including machine type and Docker image. All worker pools except the first one are optional and can be skipped by providing an empty value.
- (::Array<::Google::Cloud::AIPlatform::V1::WorkerPoolSpec>) — Required. The spec of the worker pools including machine type and Docker image. All worker pools except the first one are optional and can be skipped by providing an empty value.