- 0.62.0 (latest)
- 0.61.0
- 0.60.0
- 0.59.0
- 0.58.0
- 0.57.0
- 0.56.0
- 0.55.0
- 0.54.0
- 0.53.0
- 0.52.0
- 0.51.0
- 0.50.0
- 0.49.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.1
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
Reference documentation and code samples for the Vertex AI V1 API class Google::Cloud::AIPlatform::V1::BatchReadFeatureValuesRequest.
Request message for FeaturestoreService.BatchReadFeatureValues.
Inherits
- Object
Extended By
- Google::Protobuf::MessageExts::ClassMethods
Includes
- Google::Protobuf::MessageExts
Methods
#bigquery_read_instances
def bigquery_read_instances() -> ::Google::Cloud::AIPlatform::V1::BigQuerySource
- (::Google::Cloud::AIPlatform::V1::BigQuerySource) — Similar to csv_read_instances, but from BigQuery source.
#bigquery_read_instances=
def bigquery_read_instances=(value) -> ::Google::Cloud::AIPlatform::V1::BigQuerySource
- value (::Google::Cloud::AIPlatform::V1::BigQuerySource) — Similar to csv_read_instances, but from BigQuery source.
- (::Google::Cloud::AIPlatform::V1::BigQuerySource) — Similar to csv_read_instances, but from BigQuery source.
#csv_read_instances
def csv_read_instances() -> ::Google::Cloud::AIPlatform::V1::CsvSource
-
(::Google::Cloud::AIPlatform::V1::CsvSource) — Each read instance consists of exactly one read timestamp and one or more
entity IDs identifying entities of the corresponding EntityTypes whose
Features are requested.
Each output instance contains Feature values of requested entities concatenated together as of the read time.
An example read instance may be
foo_entity_id, bar_entity_id, 2020-01-01T10:00:00.123Z
.An example output instance may be
foo_entity_id, bar_entity_id, 2020-01-01T10:00:00.123Z, foo_entity_feature1_value, bar_entity_feature2_value
.Timestamp in each read instance must be millisecond-aligned.
csv_read_instances
are read instances stored in a plain-text CSV file. The header should be: [ENTITY_TYPE_ID1], [ENTITY_TYPE_ID2], ..., timestampThe columns can be in any order.
Values in the timestamp column must use the RFC 3339 format, e.g.
2012-07-30T10:43:17.123Z
.
#csv_read_instances=
def csv_read_instances=(value) -> ::Google::Cloud::AIPlatform::V1::CsvSource
-
value (::Google::Cloud::AIPlatform::V1::CsvSource) — Each read instance consists of exactly one read timestamp and one or more
entity IDs identifying entities of the corresponding EntityTypes whose
Features are requested.
Each output instance contains Feature values of requested entities concatenated together as of the read time.
An example read instance may be
foo_entity_id, bar_entity_id, 2020-01-01T10:00:00.123Z
.An example output instance may be
foo_entity_id, bar_entity_id, 2020-01-01T10:00:00.123Z, foo_entity_feature1_value, bar_entity_feature2_value
.Timestamp in each read instance must be millisecond-aligned.
csv_read_instances
are read instances stored in a plain-text CSV file. The header should be: [ENTITY_TYPE_ID1], [ENTITY_TYPE_ID2], ..., timestampThe columns can be in any order.
Values in the timestamp column must use the RFC 3339 format, e.g.
2012-07-30T10:43:17.123Z
.
-
(::Google::Cloud::AIPlatform::V1::CsvSource) — Each read instance consists of exactly one read timestamp and one or more
entity IDs identifying entities of the corresponding EntityTypes whose
Features are requested.
Each output instance contains Feature values of requested entities concatenated together as of the read time.
An example read instance may be
foo_entity_id, bar_entity_id, 2020-01-01T10:00:00.123Z
.An example output instance may be
foo_entity_id, bar_entity_id, 2020-01-01T10:00:00.123Z, foo_entity_feature1_value, bar_entity_feature2_value
.Timestamp in each read instance must be millisecond-aligned.
csv_read_instances
are read instances stored in a plain-text CSV file. The header should be: [ENTITY_TYPE_ID1], [ENTITY_TYPE_ID2], ..., timestampThe columns can be in any order.
Values in the timestamp column must use the RFC 3339 format, e.g.
2012-07-30T10:43:17.123Z
.
#destination
def destination() -> ::Google::Cloud::AIPlatform::V1::FeatureValueDestination
- (::Google::Cloud::AIPlatform::V1::FeatureValueDestination) — Required. Specifies output location and format.
#destination=
def destination=(value) -> ::Google::Cloud::AIPlatform::V1::FeatureValueDestination
- value (::Google::Cloud::AIPlatform::V1::FeatureValueDestination) — Required. Specifies output location and format.
- (::Google::Cloud::AIPlatform::V1::FeatureValueDestination) — Required. Specifies output location and format.
#entity_type_specs
def entity_type_specs() -> ::Array<::Google::Cloud::AIPlatform::V1::BatchReadFeatureValuesRequest::EntityTypeSpec>
- (::Array<::Google::Cloud::AIPlatform::V1::BatchReadFeatureValuesRequest::EntityTypeSpec>) — Required. Specifies EntityType grouping Features to read values of and settings. Each EntityType referenced in [BatchReadFeatureValuesRequest.entity_type_specs] must have a column specifying entity IDs in the EntityType in [BatchReadFeatureValuesRequest.request][] .
#entity_type_specs=
def entity_type_specs=(value) -> ::Array<::Google::Cloud::AIPlatform::V1::BatchReadFeatureValuesRequest::EntityTypeSpec>
- value (::Array<::Google::Cloud::AIPlatform::V1::BatchReadFeatureValuesRequest::EntityTypeSpec>) — Required. Specifies EntityType grouping Features to read values of and settings. Each EntityType referenced in [BatchReadFeatureValuesRequest.entity_type_specs] must have a column specifying entity IDs in the EntityType in [BatchReadFeatureValuesRequest.request][] .
- (::Array<::Google::Cloud::AIPlatform::V1::BatchReadFeatureValuesRequest::EntityTypeSpec>) — Required. Specifies EntityType grouping Features to read values of and settings. Each EntityType referenced in [BatchReadFeatureValuesRequest.entity_type_specs] must have a column specifying entity IDs in the EntityType in [BatchReadFeatureValuesRequest.request][] .
#featurestore
def featurestore() -> ::String
-
(::String) — Required. The resource name of the Featurestore from which to query Feature values.
Format:
projects/{project}/locations/{location}/featurestores/{featurestore}
#featurestore=
def featurestore=(value) -> ::String
-
value (::String) — Required. The resource name of the Featurestore from which to query Feature values.
Format:
projects/{project}/locations/{location}/featurestores/{featurestore}
-
(::String) — Required. The resource name of the Featurestore from which to query Feature values.
Format:
projects/{project}/locations/{location}/featurestores/{featurestore}
#pass_through_fields
def pass_through_fields() -> ::Array<::Google::Cloud::AIPlatform::V1::BatchReadFeatureValuesRequest::PassThroughField>
-
(::Array<::Google::Cloud::AIPlatform::V1::BatchReadFeatureValuesRequest::PassThroughField>) — When not empty, the specified fields in the *_read_instances source will be
joined as-is in the output, in addition to those fields from the
Featurestore Entity.
For BigQuery source, the type of the pass-through values will be automatically inferred. For CSV source, the pass-through values will be passed as opaque bytes.
#pass_through_fields=
def pass_through_fields=(value) -> ::Array<::Google::Cloud::AIPlatform::V1::BatchReadFeatureValuesRequest::PassThroughField>
-
value (::Array<::Google::Cloud::AIPlatform::V1::BatchReadFeatureValuesRequest::PassThroughField>) — When not empty, the specified fields in the *_read_instances source will be
joined as-is in the output, in addition to those fields from the
Featurestore Entity.
For BigQuery source, the type of the pass-through values will be automatically inferred. For CSV source, the pass-through values will be passed as opaque bytes.
-
(::Array<::Google::Cloud::AIPlatform::V1::BatchReadFeatureValuesRequest::PassThroughField>) — When not empty, the specified fields in the *_read_instances source will be
joined as-is in the output, in addition to those fields from the
Featurestore Entity.
For BigQuery source, the type of the pass-through values will be automatically inferred. For CSV source, the pass-through values will be passed as opaque bytes.