- 0.58.0 (latest)
- 0.57.0
- 0.56.0
- 0.55.0
- 0.54.0
- 0.53.0
- 0.52.0
- 0.51.0
- 0.50.0
- 0.49.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.1
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
Training Dataset information.
Inherits
- Object
Extended By
- Google::Protobuf::MessageExts::ClassMethods
Includes
- Google::Protobuf::MessageExts
Methods
#bigquery_source
def bigquery_source() -> ::Google::Cloud::AIPlatform::V1::BigQuerySource
Returns
- (::Google::Cloud::AIPlatform::V1::BigQuerySource) — The BigQuery table of the unmanaged Dataset used to train this Model.
#bigquery_source=
def bigquery_source=(value) -> ::Google::Cloud::AIPlatform::V1::BigQuerySource
Parameter
- value (::Google::Cloud::AIPlatform::V1::BigQuerySource) — The BigQuery table of the unmanaged Dataset used to train this Model.
Returns
- (::Google::Cloud::AIPlatform::V1::BigQuerySource) — The BigQuery table of the unmanaged Dataset used to train this Model.
#data_format
def data_format() -> ::String
Returns
-
(::String) — Data format of the dataset, only applicable if the input is from
Google Cloud Storage.
The possible formats are:
"tf-record" The source file is a TFRecord file.
"csv" The source file is a CSV file.
#data_format=
def data_format=(value) -> ::String
Parameter
-
value (::String) — Data format of the dataset, only applicable if the input is from
Google Cloud Storage.
The possible formats are:
"tf-record" The source file is a TFRecord file.
"csv" The source file is a CSV file.
Returns
-
(::String) — Data format of the dataset, only applicable if the input is from
Google Cloud Storage.
The possible formats are:
"tf-record" The source file is a TFRecord file.
"csv" The source file is a CSV file.
#dataset
def dataset() -> ::String
Returns
- (::String) — The resource name of the Dataset used to train this Model.
#dataset=
def dataset=(value) -> ::String
Parameter
- value (::String) — The resource name of the Dataset used to train this Model.
Returns
- (::String) — The resource name of the Dataset used to train this Model.
#gcs_source
def gcs_source() -> ::Google::Cloud::AIPlatform::V1::GcsSource
Returns
- (::Google::Cloud::AIPlatform::V1::GcsSource) — The Google Cloud Storage uri of the unmanaged Dataset used to train this Model.
#gcs_source=
def gcs_source=(value) -> ::Google::Cloud::AIPlatform::V1::GcsSource
Parameter
- value (::Google::Cloud::AIPlatform::V1::GcsSource) — The Google Cloud Storage uri of the unmanaged Dataset used to train this Model.
Returns
- (::Google::Cloud::AIPlatform::V1::GcsSource) — The Google Cloud Storage uri of the unmanaged Dataset used to train this Model.
#logging_sampling_strategy
def logging_sampling_strategy() -> ::Google::Cloud::AIPlatform::V1::SamplingStrategy
Returns
- (::Google::Cloud::AIPlatform::V1::SamplingStrategy) — Strategy to sample data from Training Dataset. If not set, we process the whole dataset.
#logging_sampling_strategy=
def logging_sampling_strategy=(value) -> ::Google::Cloud::AIPlatform::V1::SamplingStrategy
Parameter
- value (::Google::Cloud::AIPlatform::V1::SamplingStrategy) — Strategy to sample data from Training Dataset. If not set, we process the whole dataset.
Returns
- (::Google::Cloud::AIPlatform::V1::SamplingStrategy) — Strategy to sample data from Training Dataset. If not set, we process the whole dataset.
#target_field
def target_field() -> ::String
Returns
- (::String) — The target field name the model is to predict. This field will be excluded when doing Predict and (or) Explain for the training data.
#target_field=
def target_field=(value) -> ::String
Parameter
- value (::String) — The target field name the model is to predict. This field will be excluded when doing Predict and (or) Explain for the training data.
Returns
- (::String) — The target field name the model is to predict. This field will be excluded when doing Predict and (or) Explain for the training data.