Analyser une application de sentiment

Application d'API Natural Language de base qui effectue une analyse des sentiments sur du texte.

Pages de documentation incluant cet exemple de code

Pour afficher l'exemple de code utilisé en contexte, consultez la documentation suivante :

Exemple de code

Python

"""Demonstrates how to make a simple call to the Natural Language API."""

import argparse

from google.cloud import language_v1

def print_result(annotations):
    score = annotations.document_sentiment.score
    magnitude = annotations.document_sentiment.magnitude

    for index, sentence in enumerate(annotations.sentences):
        sentence_sentiment = sentence.sentiment.score
        print(
            "Sentence {} has a sentiment score of {}".format(index, sentence_sentiment)
        )

    print(
        "Overall Sentiment: score of {} with magnitude of {}".format(score, magnitude)
    )
    return 0

def analyze(movie_review_filename):
    """Run a sentiment analysis request on text within a passed filename."""
    client = language_v1.LanguageServiceClient()

    with open(movie_review_filename, "r") as review_file:
        # Instantiates a plain text document.
        content = review_file.read()

    document = language_v1.Document(content=content, type_=language_v1.Document.Type.PLAIN_TEXT)
    annotations = client.analyze_sentiment(request={'document': document})

    # Print the results
    print_result(annotations)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
    )
    parser.add_argument(
        "movie_review_filename",
        help="The filename of the movie review you'd like to analyze.",
    )
    args = parser.parse_args()

    analyze(args.movie_review_filename)

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'exemple de navigateur Google Cloud.