ベクトル検索について
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
Memorystore for Redis Cluster は、ベクトル データの保存とクエリをサポートしています。このページでは、Memorystore for Redis Cluster のベクトル検索について説明します。
Memorystore for Redis Cluster のベクトル検索は、オープンソースの LLM フレームワーク LangChain と互換性があります。LangChain でベクトル検索を使用すると、次のユースケースのソリューションを構築できます。
- 検索拡張生成(RAG)
- LLM キャッシュ
- レコメンデーション エンジン
- セマンティック検索
- 画像類似性検索
生成 AI データの保存に Memorystore を使用するメリットは、Memorystore の速度です。Memorystore for Redis Cluster のベクトル検索はマルチスレッド クエリを活用し、低レイテンシで高スループットのクエリ処理(QPS)を実現します。
Memorystore には、処理速度と精度のバランスをとれるように、2 つの異なる検索アプローチも用意されています。HNSW(Hierarchical Navigable Small World)オプションでは、概算値をすばやく取得できます。近似一致で十分な大規模なデータセットに最適です。厳密な精度が必要な場合については、「FLAT」アプローチによって正確な結果が生成されますが、処理に要する時間が若干長くなる可能性があります。
ベクトルデータの読み取り / 書き込み速度を最速にするようにアプリケーションを最適化する場合は、Memorystore for Redis Cluster が最適なオプションとなる可能性があります。
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-09-18 UTC。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["わかりにくい","hardToUnderstand","thumb-down"],["情報またはサンプルコードが不正確","incorrectInformationOrSampleCode","thumb-down"],["必要な情報 / サンプルがない","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-09-18 UTC。"],[],[],null,[]]