メインフレーム上でローカルにデータのコード変換を行うのは CPU 使用率の高いプロセスであり、100 万命令/秒(MIPS)の高い消費につながります。これを回避するには、Cloud Run を使用してGoogle Cloudでメインフレーム データをリモートで移動してコード変換します。これにより、ビジネス クリティカルなタスクにメインフレームを解放し、MIPS の消費を削減できます。
非常に大量のデータ(1 日あたり約 500 GB 以上)をメインフレームから Google Cloudに移動し、この作業にメインフレームを使用したくない場合は、クラウド対応の Virtual Tape Library(VTL)ソリューションを使用して、データを Cloud Storage バケットに転送できます。その後、Cloud Run を使用してバケット内のデータをコード変換し、BigQuery に移動できます。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["わかりにくい","hardToUnderstand","thumb-down"],["情報またはサンプルコードが不正確","incorrectInformationOrSampleCode","thumb-down"],["必要な情報 / サンプルがない","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-09-03 UTC。"],[],[],null,["# Transcode mainframe data moved to Google Cloud using virtual tape library\n\nTranscoding data locally on a mainframe is a CPU-intensive process that results\nin high million instructions per second (MIPS) consumption. To avoid this, you\ncan use Cloud Run to move and transcode mainframe data remotely on\nGoogle Cloud. This frees up your mainframe for business critical tasks and also\nreduces MIPS consumption.\n\nIf you want to move very large volumes of data (around 500 GB per day or more)\nfrom your mainframe to Google Cloud, and don't want to use your mainframe for\nthis effort, you can use a cloud-enabled [Virtual Tape Library (VTL)](https://en.wikipedia.org/wiki/Virtual_tape_library) solution to transfer the data to a Cloud Storage\nbucket. You can then use Cloud Run to transcode data present in the\nbucket and move it to BigQuery.\n\nThis page discusses how to read mainframe data copied into a Cloud Storage\nbucket, transcode it from the extended binary coded decimal interchange code\n(EBCDIC) dataset to the ORC format in UTF-8, and load the dataset to a\nBigQuery table.\n| **Note:** This page doesn't explain you how to copy your data from your mainframe to a Cloud Storage bucket. The procedure described in this page starts with the assumption that you've moved your mainframe data to a Cloud Storage bucket.\n\nThe following diagram shows how you can move your mainframe data to a\nCloud Storage bucket using a VTL solution, transcode the data to the ORC\nformat using Cloud Run, and then move the content to BigQuery.\n\n\u003cbr /\u003e\n\nRemotely transcode mainframe data using VTL\n\n\u003cbr /\u003e\n\nBefore you begin\n----------------\n\n- Choose a VTL solution that suits your requirements and move your mainframe data to a Cloud Storage bucket and save it as a `.dat`. Ensure that you add a [metadata key](/storage/docs/viewing-editing-metadata#command-line_1) named `x-goog-meta-lrecl` to the uploaded `.dat` file, and that the metadata key length is equal to the original file's record length, for example 80.\n- [Deploy Mainframe Connector on Cloud Run](/mainframe-connector/docs/deploy-mainframe-connector).\n- In your mainframe, set the `GCSDSNURI` environment variable to the prefix that you have used for your mainframe data on Cloud Storage bucket. \n\n ```\n export GCSDSNURI=\"gs://BUCKET/PREFIX\"\n ```\n Replace the following:\n - \u003cvar translate=\"no\"\u003eBUCKET\u003c/var\u003e: The name of the Cloud Storage bucket.\n - \u003cvar translate=\"no\"\u003ePREFIX\u003c/var\u003e: The prefix that you want to use in the bucket.\n- [Create a service account](/iam/docs/service-accounts-create) or identify an existing service account to use with Mainframe Connector. This service account must have permissions to access Cloud Storage buckets, BigQuery datasets, and any other Google Cloud resource that you want to use.\n- Ensure that the service account you created is assigned the [Cloud Run Invoker role](/run/docs/reference/iam/roles#run.invoker).\n\nTranscode mainframe data uploaded to a Cloud Storage bucket\n-----------------------------------------------------------\n\nTo move mainframe data to Google Cloud using VTL and transcode remotely,\nyou must perform the following tasks:\n\n1. Read and transcode the data present in a Cloud Storage bucket to the ORC format. The transcoding operation converts a mainframe EBCDIC dataset to the ORC format in UTF-8.\n2. Load the dataset to a BigQuery table.\n3. (Optional) Execute a SQL query on the BigQuery table.\n4. (Optional) Export data from BigQuery into a binary file in Cloud Storage.\n\nTo perform these tasks, follow these steps:\n\n1. In your mainframe, create a job to read the data from a `.dat`\n file in a Cloud Storage bucket, and transcode it to ORC format, as follows.\n\n | **Note**\n | - Not all Google Cloud commands support remote transcoding. For more information, see [Mainframe Connector API reference](/mainframe-connector/docs/reference).\n | - Variables with the suffix FILLER are ignored during the import process.\n | - From version 5.12.0 onwards, Mainframe Connector replaces hyphens (\"-\") with underscores (\"_\") in variable names. If you want to keep hyphens in your variable names, disable this automatic conversion by setting the database variable `BQSH_FEATURE_CONVERT_UNDERSCORE_IN_FIELDS_NAME` to `false`.\n\n For the complete list of environment variables supported by\n Mainframe Connector, see [Environment variables](/mainframe-connector/docs/environment-variables). \n\n //STEP01 EXEC BQSH\n //COPYBOOK DD DISP=SHR,DSN=\u003cHLQ\u003e.COPYBOOK.FILENAME\n //STDIN DD *\n gsutil cp --replace gs://mybucket/tablename.orc \\\n --inDsn \u003cvar translate=\"no\"\u003eINPUT_FILENAME\u003c/var\u003e \\\n --remoteHost \u003cmainframe-connector-url\u003e.a.run.app \\\n --remotePort 443 \\\n --project_id \u003cvar translate=\"no\"\u003ePROJECT_NAME\u003c/var\u003e\n /*\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003ePROJECT_NAME\u003c/var\u003e: The name of the project in which you want to execute the query.\n - \u003cvar translate=\"no\"\u003eINPUT_FILENAME\u003c/var\u003e: The name of the `.dat` file that you uploaded to a Cloud Storage bucket.\n\n If you want to log the commands executed during this process, you can [enable load statistics](/mainframe-connector/docs/reference#enable_load_statistics).\n2. (Optional) Create and submit a BigQuery query job that executes a SQL read from\n the [QUERY DD file](/mainframe-connector/docs/reference#dataset-names).\n Typically the query will be a `MERGE` or `SELECT INTO DML`\n statement that results in transformation of a BigQuery table. Note\n that Mainframe Connector logs in job metrics but doesn't write query\n results to a file.\n\n You can query BigQuery in various ways-inline, with a separate\n dataset using DD, or with a separate dataset using DSN. \n\n Example JCL\n //STEP03 EXEC BQSH\n //QUERY DD DSN=\u003cHLQ\u003e.QUERY.FILENAME,DISP=SHR\n //STDIN DD *\n PROJECT=\u003cvar translate=\"no\"\u003ePROJECT_NAME\u003c/var\u003e\n LOCATION=\u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e\n bq query --project_id=$PROJECT \\\n --location=$LOCATION/*\n /*\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003ePROJECT_NAME\u003c/var\u003e: The name of the project in which you want to execute the query.\n - \u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e: The location for where the query will be executed. We recommended that you execute the query in a location close to the data.\n3. (Optional) Create and submit an export job that executes a SQL read from the\n [QUERY DD file](/mainframe-connector/docs/reference#dataset-names), and exports\n the resulting dataset to Cloud Storage as a binary file.\n\n Example JCL\n //STEP04 EXEC BQSH\n //OUTFILE DD DSN=\u003cHLQ\u003e.DATA.FILENAME,DISP=SHR\n //COPYBOOK DD DISP=SHR,DSN=\u003cHLQ\u003e.COPYBOOK.FILENAME\n //QUERY DD DSN=\u003cHLQ\u003e.QUERY.FILENAME,DISP=SHR\n //STDIN DD *\n PROJECT=\u003cvar translate=\"no\"\u003ePROJECT_NAME\u003c/var\u003e\n DATASET_ID=\u003cvar translate=\"no\"\u003eDATASET_ID\u003c/var\u003e\n DESTINATION_TABLE=\u003cvar translate=\"no\"\u003eDESTINATION_TABLE\u003c/var\u003e\n BUCKET=\u003cvar translate=\"no\"\u003eBUCKET\u003c/var\u003e\n bq export --project_id=$PROJECT \\\n --dataset_id=$DATASET_ID \\\n --destination_table=$DESTINATION_TABLE \\\n --location=\"US\" \\\n --bucket=$BUCKET \\\n --remoteHost \u003cmainframe-connector-url\u003e.a.run.app \\\n --remotePort 443\n /*\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003ePROJECT_NAME\u003c/var\u003e: The name of the project in which you want to execute the query.\n - \u003cvar translate=\"no\"\u003eDATASET_ID\u003c/var\u003e: The BigQuery dataset ID that contains the table that you want to export.\n - \u003cvar translate=\"no\"\u003eDESTINATION_TABLE\u003c/var\u003e: The BigQuery table that you want to export.\n - \u003cvar translate=\"no\"\u003eBUCKET\u003c/var\u003e: The Cloud Storage bucket that will contain the output binary file."]]