- 0.49.0 (latest)
- 0.48.0
- 0.47.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
public static final class TrainCustomModelRequest.GcsTrainingInput.Builder extends GeneratedMessageV3.Builder<TrainCustomModelRequest.GcsTrainingInput.Builder> implements TrainCustomModelRequest.GcsTrainingInputOrBuilder
Cloud Storage training data input.
Protobuf type
google.cloud.discoveryengine.v1alpha.TrainCustomModelRequest.GcsTrainingInput
Inheritance
Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > TrainCustomModelRequest.GcsTrainingInput.BuilderStatic Methods
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()
Returns | |
---|---|
Type | Description |
Descriptor |
Methods
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
public TrainCustomModelRequest.GcsTrainingInput.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters | |
---|---|
Name | Description |
field |
FieldDescriptor |
value |
Object |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
build()
public TrainCustomModelRequest.GcsTrainingInput build()
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput |
buildPartial()
public TrainCustomModelRequest.GcsTrainingInput buildPartial()
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput |
clear()
public TrainCustomModelRequest.GcsTrainingInput.Builder clear()
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
clearCorpusDataPath()
public TrainCustomModelRequest.GcsTrainingInput.Builder clearCorpusDataPath()
The Cloud Storage corpus data which could be associated in train data.
The data path format is gs://<bucket_to_data>/<jsonl_file_name>
.
A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id, title
and text. Example:
{"_id": "doc1", title: "relevant doc", "text": "relevant text"}
string corpus_data_path = 1;
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
This builder for chaining. |
clearField(Descriptors.FieldDescriptor field)
public TrainCustomModelRequest.GcsTrainingInput.Builder clearField(Descriptors.FieldDescriptor field)
Parameter | |
---|---|
Name | Description |
field |
FieldDescriptor |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
clearOneof(Descriptors.OneofDescriptor oneof)
public TrainCustomModelRequest.GcsTrainingInput.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter | |
---|---|
Name | Description |
oneof |
OneofDescriptor |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
clearQueryDataPath()
public TrainCustomModelRequest.GcsTrainingInput.Builder clearQueryDataPath()
The gcs query data which could be associated in train data.
The data path format is gs://<bucket_to_data>/<jsonl_file_name>
.
A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id and text. Example: {"_id": "query1", "text": "example query"}
string query_data_path = 2;
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
This builder for chaining. |
clearTestDataPath()
public TrainCustomModelRequest.GcsTrainingInput.Builder clearTestDataPath()
Cloud Storage test data. Same format as train_data_path. If not provided, a random 80/20 train/test split will be performed on train_data_path.
string test_data_path = 4;
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
This builder for chaining. |
clearTrainDataPath()
public TrainCustomModelRequest.GcsTrainingInput.Builder clearTrainDataPath()
Cloud Storage training data path whose format should be
gs://<bucket_to_data>/<tsv_file_name>
. The file should be in tsv
format. Each line should have the doc_id and query_id and score (number).
For search-tuning model, it should have the query-id corpus-id
score as tsv file header. The score should be a number in [0, inf+)
.
The larger the number is, the more relevant the pair is. Example:
query-id\tcorpus-id\tscore
query1\tdoc1\t1
string train_data_path = 3;
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
This builder for chaining. |
clone()
public TrainCustomModelRequest.GcsTrainingInput.Builder clone()
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
getCorpusDataPath()
public String getCorpusDataPath()
The Cloud Storage corpus data which could be associated in train data.
The data path format is gs://<bucket_to_data>/<jsonl_file_name>
.
A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id, title
and text. Example:
{"_id": "doc1", title: "relevant doc", "text": "relevant text"}
string corpus_data_path = 1;
Returns | |
---|---|
Type | Description |
String |
The corpusDataPath. |
getCorpusDataPathBytes()
public ByteString getCorpusDataPathBytes()
The Cloud Storage corpus data which could be associated in train data.
The data path format is gs://<bucket_to_data>/<jsonl_file_name>
.
A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id, title
and text. Example:
{"_id": "doc1", title: "relevant doc", "text": "relevant text"}
string corpus_data_path = 1;
Returns | |
---|---|
Type | Description |
ByteString |
The bytes for corpusDataPath. |
getDefaultInstanceForType()
public TrainCustomModelRequest.GcsTrainingInput getDefaultInstanceForType()
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput |
getDescriptorForType()
public Descriptors.Descriptor getDescriptorForType()
Returns | |
---|---|
Type | Description |
Descriptor |
getQueryDataPath()
public String getQueryDataPath()
The gcs query data which could be associated in train data.
The data path format is gs://<bucket_to_data>/<jsonl_file_name>
.
A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id and text. Example: {"_id": "query1", "text": "example query"}
string query_data_path = 2;
Returns | |
---|---|
Type | Description |
String |
The queryDataPath. |
getQueryDataPathBytes()
public ByteString getQueryDataPathBytes()
The gcs query data which could be associated in train data.
The data path format is gs://<bucket_to_data>/<jsonl_file_name>
.
A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id and text. Example: {"_id": "query1", "text": "example query"}
string query_data_path = 2;
Returns | |
---|---|
Type | Description |
ByteString |
The bytes for queryDataPath. |
getTestDataPath()
public String getTestDataPath()
Cloud Storage test data. Same format as train_data_path. If not provided, a random 80/20 train/test split will be performed on train_data_path.
string test_data_path = 4;
Returns | |
---|---|
Type | Description |
String |
The testDataPath. |
getTestDataPathBytes()
public ByteString getTestDataPathBytes()
Cloud Storage test data. Same format as train_data_path. If not provided, a random 80/20 train/test split will be performed on train_data_path.
string test_data_path = 4;
Returns | |
---|---|
Type | Description |
ByteString |
The bytes for testDataPath. |
getTrainDataPath()
public String getTrainDataPath()
Cloud Storage training data path whose format should be
gs://<bucket_to_data>/<tsv_file_name>
. The file should be in tsv
format. Each line should have the doc_id and query_id and score (number).
For search-tuning model, it should have the query-id corpus-id
score as tsv file header. The score should be a number in [0, inf+)
.
The larger the number is, the more relevant the pair is. Example:
query-id\tcorpus-id\tscore
query1\tdoc1\t1
string train_data_path = 3;
Returns | |
---|---|
Type | Description |
String |
The trainDataPath. |
getTrainDataPathBytes()
public ByteString getTrainDataPathBytes()
Cloud Storage training data path whose format should be
gs://<bucket_to_data>/<tsv_file_name>
. The file should be in tsv
format. Each line should have the doc_id and query_id and score (number).
For search-tuning model, it should have the query-id corpus-id
score as tsv file header. The score should be a number in [0, inf+)
.
The larger the number is, the more relevant the pair is. Example:
query-id\tcorpus-id\tscore
query1\tdoc1\t1
string train_data_path = 3;
Returns | |
---|---|
Type | Description |
ByteString |
The bytes for trainDataPath. |
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns | |
---|---|
Type | Description |
FieldAccessorTable |
isInitialized()
public final boolean isInitialized()
Returns | |
---|---|
Type | Description |
boolean |
mergeFrom(TrainCustomModelRequest.GcsTrainingInput other)
public TrainCustomModelRequest.GcsTrainingInput.Builder mergeFrom(TrainCustomModelRequest.GcsTrainingInput other)
Parameter | |
---|---|
Name | Description |
other |
TrainCustomModelRequest.GcsTrainingInput |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public TrainCustomModelRequest.GcsTrainingInput.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters | |
---|---|
Name | Description |
input |
CodedInputStream |
extensionRegistry |
ExtensionRegistryLite |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
Exceptions | |
---|---|
Type | Description |
IOException |
mergeFrom(Message other)
public TrainCustomModelRequest.GcsTrainingInput.Builder mergeFrom(Message other)
Parameter | |
---|---|
Name | Description |
other |
Message |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
mergeUnknownFields(UnknownFieldSet unknownFields)
public final TrainCustomModelRequest.GcsTrainingInput.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter | |
---|---|
Name | Description |
unknownFields |
UnknownFieldSet |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
setCorpusDataPath(String value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setCorpusDataPath(String value)
The Cloud Storage corpus data which could be associated in train data.
The data path format is gs://<bucket_to_data>/<jsonl_file_name>
.
A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id, title
and text. Example:
{"_id": "doc1", title: "relevant doc", "text": "relevant text"}
string corpus_data_path = 1;
Parameter | |
---|---|
Name | Description |
value |
String The corpusDataPath to set. |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
This builder for chaining. |
setCorpusDataPathBytes(ByteString value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setCorpusDataPathBytes(ByteString value)
The Cloud Storage corpus data which could be associated in train data.
The data path format is gs://<bucket_to_data>/<jsonl_file_name>
.
A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id, title
and text. Example:
{"_id": "doc1", title: "relevant doc", "text": "relevant text"}
string corpus_data_path = 1;
Parameter | |
---|---|
Name | Description |
value |
ByteString The bytes for corpusDataPath to set. |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
This builder for chaining. |
setField(Descriptors.FieldDescriptor field, Object value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters | |
---|---|
Name | Description |
field |
FieldDescriptor |
value |
Object |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
setQueryDataPath(String value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setQueryDataPath(String value)
The gcs query data which could be associated in train data.
The data path format is gs://<bucket_to_data>/<jsonl_file_name>
.
A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id and text. Example: {"_id": "query1", "text": "example query"}
string query_data_path = 2;
Parameter | |
---|---|
Name | Description |
value |
String The queryDataPath to set. |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
This builder for chaining. |
setQueryDataPathBytes(ByteString value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setQueryDataPathBytes(ByteString value)
The gcs query data which could be associated in train data.
The data path format is gs://<bucket_to_data>/<jsonl_file_name>
.
A newline delimited jsonl/ndjson file.
For search-tuning model, each line should have the _id and text. Example: {"_id": "query1", "text": "example query"}
string query_data_path = 2;
Parameter | |
---|---|
Name | Description |
value |
ByteString The bytes for queryDataPath to set. |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
This builder for chaining. |
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters | |
---|---|
Name | Description |
field |
FieldDescriptor |
index |
int |
value |
Object |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
setTestDataPath(String value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setTestDataPath(String value)
Cloud Storage test data. Same format as train_data_path. If not provided, a random 80/20 train/test split will be performed on train_data_path.
string test_data_path = 4;
Parameter | |
---|---|
Name | Description |
value |
String The testDataPath to set. |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
This builder for chaining. |
setTestDataPathBytes(ByteString value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setTestDataPathBytes(ByteString value)
Cloud Storage test data. Same format as train_data_path. If not provided, a random 80/20 train/test split will be performed on train_data_path.
string test_data_path = 4;
Parameter | |
---|---|
Name | Description |
value |
ByteString The bytes for testDataPath to set. |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
This builder for chaining. |
setTrainDataPath(String value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setTrainDataPath(String value)
Cloud Storage training data path whose format should be
gs://<bucket_to_data>/<tsv_file_name>
. The file should be in tsv
format. Each line should have the doc_id and query_id and score (number).
For search-tuning model, it should have the query-id corpus-id
score as tsv file header. The score should be a number in [0, inf+)
.
The larger the number is, the more relevant the pair is. Example:
query-id\tcorpus-id\tscore
query1\tdoc1\t1
string train_data_path = 3;
Parameter | |
---|---|
Name | Description |
value |
String The trainDataPath to set. |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
This builder for chaining. |
setTrainDataPathBytes(ByteString value)
public TrainCustomModelRequest.GcsTrainingInput.Builder setTrainDataPathBytes(ByteString value)
Cloud Storage training data path whose format should be
gs://<bucket_to_data>/<tsv_file_name>
. The file should be in tsv
format. Each line should have the doc_id and query_id and score (number).
For search-tuning model, it should have the query-id corpus-id
score as tsv file header. The score should be a number in [0, inf+)
.
The larger the number is, the more relevant the pair is. Example:
query-id\tcorpus-id\tscore
query1\tdoc1\t1
string train_data_path = 3;
Parameter | |
---|---|
Name | Description |
value |
ByteString The bytes for trainDataPath to set. |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |
This builder for chaining. |
setUnknownFields(UnknownFieldSet unknownFields)
public final TrainCustomModelRequest.GcsTrainingInput.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter | |
---|---|
Name | Description |
unknownFields |
UnknownFieldSet |
Returns | |
---|---|
Type | Description |
TrainCustomModelRequest.GcsTrainingInput.Builder |