Class InferenceParameter (4.59.0)

public final class InferenceParameter extends GeneratedMessageV3 implements InferenceParameterOrBuilder

The parameters of inference.

Protobuf type google.cloud.dialogflow.v2.InferenceParameter

Static Fields

MAX_OUTPUT_TOKENS_FIELD_NUMBER

public static final int MAX_OUTPUT_TOKENS_FIELD_NUMBER
Field Value
Type Description
int

TEMPERATURE_FIELD_NUMBER

public static final int TEMPERATURE_FIELD_NUMBER
Field Value
Type Description
int

TOP_K_FIELD_NUMBER

public static final int TOP_K_FIELD_NUMBER
Field Value
Type Description
int

TOP_P_FIELD_NUMBER

public static final int TOP_P_FIELD_NUMBER
Field Value
Type Description
int

Static Methods

getDefaultInstance()

public static InferenceParameter getDefaultInstance()
Returns
Type Description
InferenceParameter

getDescriptor()

public static final Descriptors.Descriptor getDescriptor()
Returns
Type Description
Descriptor

newBuilder()

public static InferenceParameter.Builder newBuilder()
Returns
Type Description
InferenceParameter.Builder

newBuilder(InferenceParameter prototype)

public static InferenceParameter.Builder newBuilder(InferenceParameter prototype)
Parameter
Name Description
prototype InferenceParameter
Returns
Type Description
InferenceParameter.Builder

parseDelimitedFrom(InputStream input)

public static InferenceParameter parseDelimitedFrom(InputStream input)
Parameter
Name Description
input InputStream
Returns
Type Description
InferenceParameter
Exceptions
Type Description
IOException

parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)

public static InferenceParameter parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Name Description
input InputStream
extensionRegistry ExtensionRegistryLite
Returns
Type Description
InferenceParameter
Exceptions
Type Description
IOException

parseFrom(byte[] data)

public static InferenceParameter parseFrom(byte[] data)
Parameter
Name Description
data byte[]
Returns
Type Description
InferenceParameter
Exceptions
Type Description
InvalidProtocolBufferException

parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)

public static InferenceParameter parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
Parameters
Name Description
data byte[]
extensionRegistry ExtensionRegistryLite
Returns
Type Description
InferenceParameter
Exceptions
Type Description
InvalidProtocolBufferException

parseFrom(ByteString data)

public static InferenceParameter parseFrom(ByteString data)
Parameter
Name Description
data ByteString
Returns
Type Description
InferenceParameter
Exceptions
Type Description
InvalidProtocolBufferException

parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)

public static InferenceParameter parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
Parameters
Name Description
data ByteString
extensionRegistry ExtensionRegistryLite
Returns
Type Description
InferenceParameter
Exceptions
Type Description
InvalidProtocolBufferException

parseFrom(CodedInputStream input)

public static InferenceParameter parseFrom(CodedInputStream input)
Parameter
Name Description
input CodedInputStream
Returns
Type Description
InferenceParameter
Exceptions
Type Description
IOException

parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)

public static InferenceParameter parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Name Description
input CodedInputStream
extensionRegistry ExtensionRegistryLite
Returns
Type Description
InferenceParameter
Exceptions
Type Description
IOException

parseFrom(InputStream input)

public static InferenceParameter parseFrom(InputStream input)
Parameter
Name Description
input InputStream
Returns
Type Description
InferenceParameter
Exceptions
Type Description
IOException

parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)

public static InferenceParameter parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Name Description
input InputStream
extensionRegistry ExtensionRegistryLite
Returns
Type Description
InferenceParameter
Exceptions
Type Description
IOException

parseFrom(ByteBuffer data)

public static InferenceParameter parseFrom(ByteBuffer data)
Parameter
Name Description
data ByteBuffer
Returns
Type Description
InferenceParameter
Exceptions
Type Description
InvalidProtocolBufferException

parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)

public static InferenceParameter parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
Parameters
Name Description
data ByteBuffer
extensionRegistry ExtensionRegistryLite
Returns
Type Description
InferenceParameter
Exceptions
Type Description
InvalidProtocolBufferException

parser()

public static Parser<InferenceParameter> parser()
Returns
Type Description
Parser<InferenceParameter>

Methods

equals(Object obj)

public boolean equals(Object obj)
Parameter
Name Description
obj Object
Returns
Type Description
boolean
Overrides

getDefaultInstanceForType()

public InferenceParameter getDefaultInstanceForType()
Returns
Type Description
InferenceParameter

getMaxOutputTokens()

public int getMaxOutputTokens()

Optional. Maximum number of the output tokens for the generator.

optional int32 max_output_tokens = 1 [(.google.api.field_behavior) = OPTIONAL];

Returns
Type Description
int

The maxOutputTokens.

getParserForType()

public Parser<InferenceParameter> getParserForType()
Returns
Type Description
Parser<InferenceParameter>
Overrides

getSerializedSize()

public int getSerializedSize()
Returns
Type Description
int
Overrides

getTemperature()

public double getTemperature()

Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.

optional double temperature = 2 [(.google.api.field_behavior) = OPTIONAL];

Returns
Type Description
double

The temperature.

getTopK()

public int getTopK()

Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.

optional int32 top_k = 3 [(.google.api.field_behavior) = OPTIONAL];

Returns
Type Description
int

The topK.

getTopP()

public double getTopP()

Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.

optional double top_p = 4 [(.google.api.field_behavior) = OPTIONAL];

Returns
Type Description
double

The topP.

hasMaxOutputTokens()

public boolean hasMaxOutputTokens()

Optional. Maximum number of the output tokens for the generator.

optional int32 max_output_tokens = 1 [(.google.api.field_behavior) = OPTIONAL];

Returns
Type Description
boolean

Whether the maxOutputTokens field is set.

hasTemperature()

public boolean hasTemperature()

Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.

optional double temperature = 2 [(.google.api.field_behavior) = OPTIONAL];

Returns
Type Description
boolean

Whether the temperature field is set.

hasTopK()

public boolean hasTopK()

Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.

optional int32 top_k = 3 [(.google.api.field_behavior) = OPTIONAL];

Returns
Type Description
boolean

Whether the topK field is set.

hasTopP()

public boolean hasTopP()

Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.

optional double top_p = 4 [(.google.api.field_behavior) = OPTIONAL];

Returns
Type Description
boolean

Whether the topP field is set.

hashCode()

public int hashCode()
Returns
Type Description
int
Overrides

internalGetFieldAccessorTable()

protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Type Description
FieldAccessorTable
Overrides

isInitialized()

public final boolean isInitialized()
Returns
Type Description
boolean
Overrides

newBuilderForType()

public InferenceParameter.Builder newBuilderForType()
Returns
Type Description
InferenceParameter.Builder

newBuilderForType(GeneratedMessageV3.BuilderParent parent)

protected InferenceParameter.Builder newBuilderForType(GeneratedMessageV3.BuilderParent parent)
Parameter
Name Description
parent BuilderParent
Returns
Type Description
InferenceParameter.Builder
Overrides

newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)

protected Object newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
Parameter
Name Description
unused UnusedPrivateParameter
Returns
Type Description
Object
Overrides

toBuilder()

public InferenceParameter.Builder toBuilder()
Returns
Type Description
InferenceParameter.Builder

writeTo(CodedOutputStream output)

public void writeTo(CodedOutputStream output)
Parameter
Name Description
output CodedOutputStream
Overrides
Exceptions
Type Description
IOException