Class BatchPredictInputConfig (2.9.0)

public final class BatchPredictInputConfig extends GeneratedMessageV3 implements BatchPredictInputConfigOrBuilder

Input configuration for BatchPredict Action. The format of input depends on the ML problem of the model used for prediction. As input source the gcs_source is expected, unless specified otherwise. The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are: <h4>AutoML Vision</h4> <div class="ds-selector-tabs"><section><h5>Classification</h5> One or more CSV files where each line is a single column: GCS_FILE_PATH The Google Cloud Storage location of an image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the batch predict output. Sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png </section><section><h5>Object Detection</h5> One or more CSV files where each line is a single column: GCS_FILE_PATH The Google Cloud Storage location of an image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the batch predict output. Sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png </section> </div> <h4>AutoML Video Intelligence</h4> <div class="ds-selector-tabs"><section><h5>Classification</h5> One or more CSV files where each line is a single column: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH is the Google Cloud Storage location of video up to 50GB in size and up to 3h in duration duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and the end time must be after the start time. Sample rows: gs://folder/video1.mp4,10,40 gs://folder/video1.mp4,20,60 gs://folder/vid2.mov,0,inf </section><section><h5>Object Tracking</h5> One or more CSV files where each line is a single column: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH is the Google Cloud Storage location of video up to 50GB in size and up to 3h in duration duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and the end time must be after the start time. Sample rows: gs://folder/video1.mp4,10,40 gs://folder/video1.mp4,20,60 gs://folder/vid2.mov,0,inf </section> </div> <h4>AutoML Natural Language</h4> <div class="ds-selector-tabs"><section><h5>Classification</h5> One or more CSV files where each line is a single column: GCS_FILE_PATH GCS_FILE_PATH is the Google Cloud Storage location of a text file. Supported file extensions: .TXT, .PDF, .TIF, .TIFF Text files can be no larger than 10MB in size. Sample rows: gs://folder/text1.txt gs://folder/text2.pdf gs://folder/text3.tif </section><section><h5>Sentiment Analysis</h5> One or more CSV files where each line is a single column: GCS_FILE_PATH GCS_FILE_PATH is the Google Cloud Storage location of a text file. Supported file extensions: .TXT, .PDF, .TIF, .TIFF Text files can be no larger than 128kB in size. Sample rows: gs://folder/text1.txt gs://folder/text2.pdf gs://folder/text3.tif </section><section><h5>Entity Extraction</h5> One or more JSONL (JSON Lines) files that either provide inline text or documents. You can only use one format, either inline text or documents, for a single call to [AutoMl.BatchPredict]. Each JSONL file contains a per line a proto that wraps a temporary user-assigned TextSnippet ID (string up to 2000 characters long) called "id", a TextSnippet proto (in JSON representation) and zero or more TextFeature protos. Any given text snippet content must have 30,000 characters or less, and also be UTF-8 NFC encoded (ASCII already is). The IDs provided should be unique. Each document JSONL file contains, per line, a proto that wraps a Document proto with input_config set. Each document cannot exceed 2MB in size. Supported document extensions: .PDF, .TIF, .TIFF Each JSONL file must not exceed 100MB in size, and no more than 20 JSONL files may be passed. Sample inline JSONL file (Shown with artificial line breaks. Actual line breaks are denoted by "\n".): { "id": "my_first_id", "text_snippet": { "content": "dog car cat"}, "text_features": [ { "text_segment": {"start_offset": 4, "end_offset": 6}, "structural_type": PARAGRAPH, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ] }, } ], }\n { "id": "2", "text_snippet": { "content": "Extended sample content", "mime_type": "text/plain" } } Sample document JSONL file (Shown with artificial line breaks. Actual line breaks are denoted by "\n".): { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.tif" ] } } } } </section> </div> <h4>AutoML Tables</h4><div class="ui-datasection-main"><section class="selected"> See Preparing your training data for more information. You can use either gcs_source or bigquery_source. For gcs_source: CSV file(s), each by itself 10GB or smaller and total size must be 100GB or smaller, where first file must have a header containing column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns. The column names must contain the model's input_feature_column_specs' display_name-s (order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows, i.e. the CSV lines, will be attempted. Sample rows from a CSV file: <pre> "First Name","Last Name","Dob","Addresses" "John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]" "Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]} </pre> For bigquery_source: The URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller. The column names must contain the model's input_feature_column_specs' display_name-s (order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows of the table will be attempted. </section> </div> Input field definitions: GCS_FILE_PATH : The path to a file on Google Cloud Storage. For example, "gs://folder/video.avi". TIME_SEGMENT_START : (TIME_OFFSET) Expresses a beginning, inclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_SEGMENT_END : (TIME_OFFSET) Expresses an end, exclusive, of a time segment within n example that has a time dimension (e.g. video). TIME_OFFSET : A number of seconds as measured from the start of an example (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is allowed, and it means the end of the example. Errors: If any of the provided CSV files can't be parsed or if more than certain percent of CSV rows cannot be processed then the operation fails and prediction does not happen. Regardless of overall success or failure the per-row failures, up to a certain count cap, will be listed in Operation.metadata.partial_failures.

Protobuf type google.cloud.automl.v1.BatchPredictInputConfig

Static Fields

GCS_SOURCE_FIELD_NUMBER

public static final int GCS_SOURCE_FIELD_NUMBER
Field Value
TypeDescription
int

Static Methods

getDefaultInstance()

public static BatchPredictInputConfig getDefaultInstance()
Returns
TypeDescription
BatchPredictInputConfig

getDescriptor()

public static final Descriptors.Descriptor getDescriptor()
Returns
TypeDescription
Descriptor

newBuilder()

public static BatchPredictInputConfig.Builder newBuilder()
Returns
TypeDescription
BatchPredictInputConfig.Builder

newBuilder(BatchPredictInputConfig prototype)

public static BatchPredictInputConfig.Builder newBuilder(BatchPredictInputConfig prototype)
Parameter
NameDescription
prototypeBatchPredictInputConfig
Returns
TypeDescription
BatchPredictInputConfig.Builder

parseDelimitedFrom(InputStream input)

public static BatchPredictInputConfig parseDelimitedFrom(InputStream input)
Parameter
NameDescription
inputInputStream
Returns
TypeDescription
BatchPredictInputConfig
Exceptions
TypeDescription
IOException

parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)

public static BatchPredictInputConfig parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
inputInputStream
extensionRegistryExtensionRegistryLite
Returns
TypeDescription
BatchPredictInputConfig
Exceptions
TypeDescription
IOException

parseFrom(byte[] data)

public static BatchPredictInputConfig parseFrom(byte[] data)
Parameter
NameDescription
databyte[]
Returns
TypeDescription
BatchPredictInputConfig
Exceptions
TypeDescription
InvalidProtocolBufferException

parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)

public static BatchPredictInputConfig parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
databyte[]
extensionRegistryExtensionRegistryLite
Returns
TypeDescription
BatchPredictInputConfig
Exceptions
TypeDescription
InvalidProtocolBufferException

parseFrom(ByteString data)

public static BatchPredictInputConfig parseFrom(ByteString data)
Parameter
NameDescription
dataByteString
Returns
TypeDescription
BatchPredictInputConfig
Exceptions
TypeDescription
InvalidProtocolBufferException

parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)

public static BatchPredictInputConfig parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
dataByteString
extensionRegistryExtensionRegistryLite
Returns
TypeDescription
BatchPredictInputConfig
Exceptions
TypeDescription
InvalidProtocolBufferException

parseFrom(CodedInputStream input)

public static BatchPredictInputConfig parseFrom(CodedInputStream input)
Parameter
NameDescription
inputCodedInputStream
Returns
TypeDescription
BatchPredictInputConfig
Exceptions
TypeDescription
IOException

parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)

public static BatchPredictInputConfig parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
inputCodedInputStream
extensionRegistryExtensionRegistryLite
Returns
TypeDescription
BatchPredictInputConfig
Exceptions
TypeDescription
IOException

parseFrom(InputStream input)

public static BatchPredictInputConfig parseFrom(InputStream input)
Parameter
NameDescription
inputInputStream
Returns
TypeDescription
BatchPredictInputConfig
Exceptions
TypeDescription
IOException

parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)

public static BatchPredictInputConfig parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
inputInputStream
extensionRegistryExtensionRegistryLite
Returns
TypeDescription
BatchPredictInputConfig
Exceptions
TypeDescription
IOException

parseFrom(ByteBuffer data)

public static BatchPredictInputConfig parseFrom(ByteBuffer data)
Parameter
NameDescription
dataByteBuffer
Returns
TypeDescription
BatchPredictInputConfig
Exceptions
TypeDescription
InvalidProtocolBufferException

parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)

public static BatchPredictInputConfig parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
dataByteBuffer
extensionRegistryExtensionRegistryLite
Returns
TypeDescription
BatchPredictInputConfig
Exceptions
TypeDescription
InvalidProtocolBufferException

parser()

public static Parser<BatchPredictInputConfig> parser()
Returns
TypeDescription
Parser<BatchPredictInputConfig>

Methods

equals(Object obj)

public boolean equals(Object obj)
Parameter
NameDescription
objObject
Returns
TypeDescription
boolean
Overrides

getDefaultInstanceForType()

public BatchPredictInputConfig getDefaultInstanceForType()
Returns
TypeDescription
BatchPredictInputConfig

getGcsSource()

public GcsSource getGcsSource()

Required. The Google Cloud Storage location for the input content.

.google.cloud.automl.v1.GcsSource gcs_source = 1 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
GcsSource

The gcsSource.

getGcsSourceOrBuilder()

public GcsSourceOrBuilder getGcsSourceOrBuilder()

Required. The Google Cloud Storage location for the input content.

.google.cloud.automl.v1.GcsSource gcs_source = 1 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
GcsSourceOrBuilder

getParserForType()

public Parser<BatchPredictInputConfig> getParserForType()
Returns
TypeDescription
Parser<BatchPredictInputConfig>
Overrides

getSerializedSize()

public int getSerializedSize()
Returns
TypeDescription
int
Overrides

getSourceCase()

public BatchPredictInputConfig.SourceCase getSourceCase()
Returns
TypeDescription
BatchPredictInputConfig.SourceCase

getUnknownFields()

public final UnknownFieldSet getUnknownFields()
Returns
TypeDescription
UnknownFieldSet
Overrides

hasGcsSource()

public boolean hasGcsSource()

Required. The Google Cloud Storage location for the input content.

.google.cloud.automl.v1.GcsSource gcs_source = 1 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
boolean

Whether the gcsSource field is set.

hashCode()

public int hashCode()
Returns
TypeDescription
int
Overrides

internalGetFieldAccessorTable()

protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
TypeDescription
FieldAccessorTable
Overrides

isInitialized()

public final boolean isInitialized()
Returns
TypeDescription
boolean
Overrides

newBuilderForType()

public BatchPredictInputConfig.Builder newBuilderForType()
Returns
TypeDescription
BatchPredictInputConfig.Builder

newBuilderForType(GeneratedMessageV3.BuilderParent parent)

protected BatchPredictInputConfig.Builder newBuilderForType(GeneratedMessageV3.BuilderParent parent)
Parameter
NameDescription
parentBuilderParent
Returns
TypeDescription
BatchPredictInputConfig.Builder
Overrides

newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)

protected Object newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
Parameter
NameDescription
unusedUnusedPrivateParameter
Returns
TypeDescription
Object
Overrides

toBuilder()

public BatchPredictInputConfig.Builder toBuilder()
Returns
TypeDescription
BatchPredictInputConfig.Builder

writeTo(CodedOutputStream output)

public void writeTo(CodedOutputStream output)
Parameter
NameDescription
outputCodedOutputStream
Overrides Exceptions
TypeDescription
IOException