Class StudySpec.ConvexAutomatedStoppingSpec (3.7.0)

See more code actions.
public static final class StudySpec.ConvexAutomatedStoppingSpec extends GeneratedMessageV3 implements StudySpec.ConvexAutomatedStoppingSpecOrBuilder

Configuration for ConvexAutomatedStoppingSpec. When there are enough completed trials (configured by min_measurement_count), for pending trials with enough measurements and steps, the policy first computes an overestimate of the objective value at max_num_steps according to the slope of the incomplete objective value curve. No prediction can be made if the curve is completely flat. If the overestimation is worse than the best objective value of the completed trials, this pending trial will be early-stopped, but a last measurement will be added to the pending trial with max_num_steps and predicted objective value from the autoregression model.

Protobuf type google.cloud.aiplatform.v1.StudySpec.ConvexAutomatedStoppingSpec

Inheritance

Object > AbstractMessageLite<MessageType,BuilderType> > AbstractMessage > GeneratedMessageV3 > StudySpec.ConvexAutomatedStoppingSpec

Static Fields

LEARNING_RATE_PARAMETER_NAME_FIELD_NUMBER

public static final int LEARNING_RATE_PARAMETER_NAME_FIELD_NUMBER
Field Value
TypeDescription
int

MAX_STEP_COUNT_FIELD_NUMBER

public static final int MAX_STEP_COUNT_FIELD_NUMBER
Field Value
TypeDescription
int

MIN_MEASUREMENT_COUNT_FIELD_NUMBER

public static final int MIN_MEASUREMENT_COUNT_FIELD_NUMBER
Field Value
TypeDescription
int

MIN_STEP_COUNT_FIELD_NUMBER

public static final int MIN_STEP_COUNT_FIELD_NUMBER
Field Value
TypeDescription
int

USE_ELAPSED_DURATION_FIELD_NUMBER

public static final int USE_ELAPSED_DURATION_FIELD_NUMBER
Field Value
TypeDescription
int

Static Methods

getDefaultInstance()

public static StudySpec.ConvexAutomatedStoppingSpec getDefaultInstance()
Returns

getDescriptor()

public static final Descriptors.Descriptor getDescriptor()
Returns
TypeDescription
Descriptor

newBuilder()

public static StudySpec.ConvexAutomatedStoppingSpec.Builder newBuilder()
Returns

newBuilder(StudySpec.ConvexAutomatedStoppingSpec prototype)

public static StudySpec.ConvexAutomatedStoppingSpec.Builder newBuilder(StudySpec.ConvexAutomatedStoppingSpec prototype)
Parameter Returns

parseDelimitedFrom(InputStream input)

public static StudySpec.ConvexAutomatedStoppingSpec parseDelimitedFrom(InputStream input)
Parameter
NameDescription
inputInputStream
Returns Exceptions
TypeDescription
IOException

parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)

public static StudySpec.ConvexAutomatedStoppingSpec parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
inputInputStream
extensionRegistryExtensionRegistryLite
Returns Exceptions
TypeDescription
IOException

parseFrom(byte[] data)

public static StudySpec.ConvexAutomatedStoppingSpec parseFrom(byte[] data)
Parameter
NameDescription
databyte[]
Returns Exceptions

parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)

public static StudySpec.ConvexAutomatedStoppingSpec parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
databyte[]
extensionRegistryExtensionRegistryLite
Returns Exceptions

parseFrom(ByteString data)

public static StudySpec.ConvexAutomatedStoppingSpec parseFrom(ByteString data)
Parameter
NameDescription
dataByteString
Returns Exceptions

parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)

public static StudySpec.ConvexAutomatedStoppingSpec parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
dataByteString
extensionRegistryExtensionRegistryLite
Returns Exceptions

parseFrom(CodedInputStream input)

public static StudySpec.ConvexAutomatedStoppingSpec parseFrom(CodedInputStream input)
Parameter
NameDescription
inputCodedInputStream
Returns Exceptions
TypeDescription
IOException

parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)

public static StudySpec.ConvexAutomatedStoppingSpec parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
inputCodedInputStream
extensionRegistryExtensionRegistryLite
Returns Exceptions
TypeDescription
IOException

parseFrom(InputStream input)

public static StudySpec.ConvexAutomatedStoppingSpec parseFrom(InputStream input)
Parameter
NameDescription
inputInputStream
Returns Exceptions
TypeDescription
IOException

parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)

public static StudySpec.ConvexAutomatedStoppingSpec parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
inputInputStream
extensionRegistryExtensionRegistryLite
Returns Exceptions
TypeDescription
IOException

parseFrom(ByteBuffer data)

public static StudySpec.ConvexAutomatedStoppingSpec parseFrom(ByteBuffer data)
Parameter
NameDescription
dataByteBuffer
Returns Exceptions

parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)

public static StudySpec.ConvexAutomatedStoppingSpec parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
dataByteBuffer
extensionRegistryExtensionRegistryLite
Returns Exceptions

parser()

public static Parser<StudySpec.ConvexAutomatedStoppingSpec> parser()
Returns

Methods

equals(Object obj)

public boolean equals(Object obj)
Parameter
NameDescription
objObject
Returns
TypeDescription
boolean
Overrides

getDefaultInstanceForType()

public StudySpec.ConvexAutomatedStoppingSpec getDefaultInstanceForType()
Returns

getLearningRateParameterName()

public String getLearningRateParameterName()

The hyper-parameter name used in the tuning job that stands for learning rate. Leave it blank if learning rate is not in a parameter in tuning. The learning_rate is used to estimate the objective value of the ongoing trial.

string learning_rate_parameter_name = 4;

Returns
TypeDescription
String

The learningRateParameterName.

getLearningRateParameterNameBytes()

public ByteString getLearningRateParameterNameBytes()

The hyper-parameter name used in the tuning job that stands for learning rate. Leave it blank if learning rate is not in a parameter in tuning. The learning_rate is used to estimate the objective value of the ongoing trial.

string learning_rate_parameter_name = 4;

Returns
TypeDescription
ByteString

The bytes for learningRateParameterName.

getMaxStepCount()

public long getMaxStepCount()

Steps used in predicting the final objective for early stopped trials. In general, it's set to be the same as the defined steps in training / tuning. If not defined, it will learn it from the completed trials. When use_steps is false, this field is set to the maximum elapsed seconds.

int64 max_step_count = 1;

Returns
TypeDescription
long

The maxStepCount.

getMinMeasurementCount()

public long getMinMeasurementCount()

The minimal number of measurements in a Trial. Early-stopping checks will not trigger if less than min_measurement_count+1 completed trials or pending trials with less than min_measurement_count measurements. If not defined, the default value is 5.

int64 min_measurement_count = 3;

Returns
TypeDescription
long

The minMeasurementCount.

getMinStepCount()

public long getMinStepCount()

Minimum number of steps for a trial to complete. Trials which do not have a measurement with step_count > min_step_count won't be considered for early stopping. It's ok to set it to 0, and a trial can be early stopped at any stage. By default, min_step_count is set to be one-tenth of the max_step_count. When use_elapsed_duration is true, this field is set to the minimum elapsed seconds.

int64 min_step_count = 2;

Returns
TypeDescription
long

The minStepCount.

getParserForType()

public Parser<StudySpec.ConvexAutomatedStoppingSpec> getParserForType()
Returns Overrides

getSerializedSize()

public int getSerializedSize()
Returns
TypeDescription
int
Overrides

getUnknownFields()

public final UnknownFieldSet getUnknownFields()
Returns
TypeDescription
UnknownFieldSet
Overrides

getUseElapsedDuration()

public boolean getUseElapsedDuration()

This bool determines whether or not the rule is applied based on elapsed_secs or steps. If use_elapsed_duration

false, the early stopping decision is made according to the predicted objective values according to the target steps. If use_elapsed_duration

true, elapsed_secs is used instead of steps. Also, in this case, the parameters max_num_steps and min_num_steps are overloaded to contain max_elapsed_seconds and min_elapsed_seconds.

bool use_elapsed_duration = 5;

Returns
TypeDescription
boolean

The useElapsedDuration.

hashCode()

public int hashCode()
Returns
TypeDescription
int
Overrides

internalGetFieldAccessorTable()

protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
TypeDescription
FieldAccessorTable
Overrides

isInitialized()

public final boolean isInitialized()
Returns
TypeDescription
boolean
Overrides

newBuilderForType()

public StudySpec.ConvexAutomatedStoppingSpec.Builder newBuilderForType()
Returns

newBuilderForType(GeneratedMessageV3.BuilderParent parent)

protected StudySpec.ConvexAutomatedStoppingSpec.Builder newBuilderForType(GeneratedMessageV3.BuilderParent parent)
Parameter
NameDescription
parentBuilderParent
Returns Overrides

newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)

protected Object newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
Parameter
NameDescription
unusedUnusedPrivateParameter
Returns
TypeDescription
Object
Overrides

toBuilder()

public StudySpec.ConvexAutomatedStoppingSpec.Builder toBuilder()
Returns

writeTo(CodedOutputStream output)

public void writeTo(CodedOutputStream output)
Parameter
NameDescription
outputCodedOutputStream
Overrides Exceptions
TypeDescription
IOException