Class DedicatedResources.Builder (3.7.0)

public static final class DedicatedResources.Builder extends GeneratedMessageV3.Builder<DedicatedResources.Builder> implements DedicatedResourcesOrBuilder

A description of resources that are dedicated to a DeployedModel, and that need a higher degree of manual configuration.

Protobuf type google.cloud.aiplatform.v1.DedicatedResources

Static Methods

getDescriptor()

public static final Descriptors.Descriptor getDescriptor()
Returns
TypeDescription
Descriptor

Methods

addAllAutoscalingMetricSpecs(Iterable<? extends AutoscalingMetricSpec> values)

public DedicatedResources.Builder addAllAutoscalingMetricSpecs(Iterable<? extends AutoscalingMetricSpec> values)

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
valuesIterable<? extends com.google.cloud.aiplatform.v1.AutoscalingMetricSpec>
Returns
TypeDescription
DedicatedResources.Builder

addAutoscalingMetricSpecs(AutoscalingMetricSpec value)

public DedicatedResources.Builder addAutoscalingMetricSpecs(AutoscalingMetricSpec value)

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
valueAutoscalingMetricSpec
Returns
TypeDescription
DedicatedResources.Builder

addAutoscalingMetricSpecs(AutoscalingMetricSpec.Builder builderForValue)

public DedicatedResources.Builder addAutoscalingMetricSpecs(AutoscalingMetricSpec.Builder builderForValue)

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
builderForValueAutoscalingMetricSpec.Builder
Returns
TypeDescription
DedicatedResources.Builder

addAutoscalingMetricSpecs(int index, AutoscalingMetricSpec value)

public DedicatedResources.Builder addAutoscalingMetricSpecs(int index, AutoscalingMetricSpec value)

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Parameters
NameDescription
indexint
valueAutoscalingMetricSpec
Returns
TypeDescription
DedicatedResources.Builder

addAutoscalingMetricSpecs(int index, AutoscalingMetricSpec.Builder builderForValue)

public DedicatedResources.Builder addAutoscalingMetricSpecs(int index, AutoscalingMetricSpec.Builder builderForValue)

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Parameters
NameDescription
indexint
builderForValueAutoscalingMetricSpec.Builder
Returns
TypeDescription
DedicatedResources.Builder

addAutoscalingMetricSpecsBuilder()

public AutoscalingMetricSpec.Builder addAutoscalingMetricSpecsBuilder()

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
AutoscalingMetricSpec.Builder

addAutoscalingMetricSpecsBuilder(int index)

public AutoscalingMetricSpec.Builder addAutoscalingMetricSpecsBuilder(int index)

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
indexint
Returns
TypeDescription
AutoscalingMetricSpec.Builder

addRepeatedField(Descriptors.FieldDescriptor field, Object value)

public DedicatedResources.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters
NameDescription
fieldFieldDescriptor
valueObject
Returns
TypeDescription
DedicatedResources.Builder
Overrides

build()

public DedicatedResources build()
Returns
TypeDescription
DedicatedResources

buildPartial()

public DedicatedResources buildPartial()
Returns
TypeDescription
DedicatedResources

clear()

public DedicatedResources.Builder clear()
Returns
TypeDescription
DedicatedResources.Builder
Overrides

clearAutoscalingMetricSpecs()

public DedicatedResources.Builder clearAutoscalingMetricSpecs()

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
DedicatedResources.Builder

clearField(Descriptors.FieldDescriptor field)

public DedicatedResources.Builder clearField(Descriptors.FieldDescriptor field)
Parameter
NameDescription
fieldFieldDescriptor
Returns
TypeDescription
DedicatedResources.Builder
Overrides

clearMachineSpec()

public DedicatedResources.Builder clearMachineSpec()

Required. Immutable. The specification of a single machine used by the prediction.

.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
DedicatedResources.Builder

clearMaxReplicaCount()

public DedicatedResources.Builder clearMaxReplicaCount()

Immutable. The maximum number of replicas this DeployedModel may be deployed on when the traffic against it increases. If the requested value is too large, the deployment will error, but if deployment succeeds then the ability to scale the model to that many replicas is guaranteed (barring service outages). If traffic against the DeployedModel increases beyond what its replicas at maximum may handle, a portion of the traffic will be dropped. If this value is not provided, will use min_replica_count as the default value. The value of this field impacts the charge against Vertex CPU and GPU quotas. Specifically, you will be charged for (max_replica_count * number of cores in the selected machine type) and (max_replica_count * number of GPUs per replica in the selected machine type).

int32 max_replica_count = 3 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
DedicatedResources.Builder

This builder for chaining.

clearMinReplicaCount()

public DedicatedResources.Builder clearMinReplicaCount()

Required. Immutable. The minimum number of machine replicas this DeployedModel will be always deployed on. This value must be greater than or equal to 1. If traffic against the DeployedModel increases, it may dynamically be deployed onto more replicas, and as traffic decreases, some of these extra replicas may be freed.

int32 min_replica_count = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
DedicatedResources.Builder

This builder for chaining.

clearOneof(Descriptors.OneofDescriptor oneof)

public DedicatedResources.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter
NameDescription
oneofOneofDescriptor
Returns
TypeDescription
DedicatedResources.Builder
Overrides

clone()

public DedicatedResources.Builder clone()
Returns
TypeDescription
DedicatedResources.Builder
Overrides

getAutoscalingMetricSpecs(int index)

public AutoscalingMetricSpec getAutoscalingMetricSpecs(int index)

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
indexint
Returns
TypeDescription
AutoscalingMetricSpec

getAutoscalingMetricSpecsBuilder(int index)

public AutoscalingMetricSpec.Builder getAutoscalingMetricSpecsBuilder(int index)

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
indexint
Returns
TypeDescription
AutoscalingMetricSpec.Builder

getAutoscalingMetricSpecsBuilderList()

public List<AutoscalingMetricSpec.Builder> getAutoscalingMetricSpecsBuilderList()

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
List<Builder>

getAutoscalingMetricSpecsCount()

public int getAutoscalingMetricSpecsCount()

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
int

getAutoscalingMetricSpecsList()

public List<AutoscalingMetricSpec> getAutoscalingMetricSpecsList()

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
List<AutoscalingMetricSpec>

getAutoscalingMetricSpecsOrBuilder(int index)

public AutoscalingMetricSpecOrBuilder getAutoscalingMetricSpecsOrBuilder(int index)

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
indexint
Returns
TypeDescription
AutoscalingMetricSpecOrBuilder

getAutoscalingMetricSpecsOrBuilderList()

public List<? extends AutoscalingMetricSpecOrBuilder> getAutoscalingMetricSpecsOrBuilderList()

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
List<? extends com.google.cloud.aiplatform.v1.AutoscalingMetricSpecOrBuilder>

getDefaultInstanceForType()

public DedicatedResources getDefaultInstanceForType()
Returns
TypeDescription
DedicatedResources

getDescriptorForType()

public Descriptors.Descriptor getDescriptorForType()
Returns
TypeDescription
Descriptor
Overrides

getMachineSpec()

public MachineSpec getMachineSpec()

Required. Immutable. The specification of a single machine used by the prediction.

.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
MachineSpec

The machineSpec.

getMachineSpecBuilder()

public MachineSpec.Builder getMachineSpecBuilder()

Required. Immutable. The specification of a single machine used by the prediction.

.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
MachineSpec.Builder

getMachineSpecOrBuilder()

public MachineSpecOrBuilder getMachineSpecOrBuilder()

Required. Immutable. The specification of a single machine used by the prediction.

.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
MachineSpecOrBuilder

getMaxReplicaCount()

public int getMaxReplicaCount()

Immutable. The maximum number of replicas this DeployedModel may be deployed on when the traffic against it increases. If the requested value is too large, the deployment will error, but if deployment succeeds then the ability to scale the model to that many replicas is guaranteed (barring service outages). If traffic against the DeployedModel increases beyond what its replicas at maximum may handle, a portion of the traffic will be dropped. If this value is not provided, will use min_replica_count as the default value. The value of this field impacts the charge against Vertex CPU and GPU quotas. Specifically, you will be charged for (max_replica_count * number of cores in the selected machine type) and (max_replica_count * number of GPUs per replica in the selected machine type).

int32 max_replica_count = 3 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
int

The maxReplicaCount.

getMinReplicaCount()

public int getMinReplicaCount()

Required. Immutable. The minimum number of machine replicas this DeployedModel will be always deployed on. This value must be greater than or equal to 1. If traffic against the DeployedModel increases, it may dynamically be deployed onto more replicas, and as traffic decreases, some of these extra replicas may be freed.

int32 min_replica_count = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
int

The minReplicaCount.

hasMachineSpec()

public boolean hasMachineSpec()

Required. Immutable. The specification of a single machine used by the prediction.

.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
boolean

Whether the machineSpec field is set.

internalGetFieldAccessorTable()

protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
TypeDescription
FieldAccessorTable
Overrides

isInitialized()

public final boolean isInitialized()
Returns
TypeDescription
boolean
Overrides

mergeFrom(DedicatedResources other)

public DedicatedResources.Builder mergeFrom(DedicatedResources other)
Parameter
NameDescription
otherDedicatedResources
Returns
TypeDescription
DedicatedResources.Builder

mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)

public DedicatedResources.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
inputCodedInputStream
extensionRegistryExtensionRegistryLite
Returns
TypeDescription
DedicatedResources.Builder
Overrides Exceptions
TypeDescription
IOException

mergeFrom(Message other)

public DedicatedResources.Builder mergeFrom(Message other)
Parameter
NameDescription
otherMessage
Returns
TypeDescription
DedicatedResources.Builder
Overrides

mergeMachineSpec(MachineSpec value)

public DedicatedResources.Builder mergeMachineSpec(MachineSpec value)

Required. Immutable. The specification of a single machine used by the prediction.

.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
valueMachineSpec
Returns
TypeDescription
DedicatedResources.Builder

mergeUnknownFields(UnknownFieldSet unknownFields)

public final DedicatedResources.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter
NameDescription
unknownFieldsUnknownFieldSet
Returns
TypeDescription
DedicatedResources.Builder
Overrides

removeAutoscalingMetricSpecs(int index)

public DedicatedResources.Builder removeAutoscalingMetricSpecs(int index)

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
indexint
Returns
TypeDescription
DedicatedResources.Builder

setAutoscalingMetricSpecs(int index, AutoscalingMetricSpec value)

public DedicatedResources.Builder setAutoscalingMetricSpecs(int index, AutoscalingMetricSpec value)

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Parameters
NameDescription
indexint
valueAutoscalingMetricSpec
Returns
TypeDescription
DedicatedResources.Builder

setAutoscalingMetricSpecs(int index, AutoscalingMetricSpec.Builder builderForValue)

public DedicatedResources.Builder setAutoscalingMetricSpecs(int index, AutoscalingMetricSpec.Builder builderForValue)

Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator's duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator's duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to aiplatform.googleapis.com/prediction/online/cpu/utilization and autoscaling_metric_specs.target to 80.

repeated .google.cloud.aiplatform.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];

Parameters
NameDescription
indexint
builderForValueAutoscalingMetricSpec.Builder
Returns
TypeDescription
DedicatedResources.Builder

setField(Descriptors.FieldDescriptor field, Object value)

public DedicatedResources.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters
NameDescription
fieldFieldDescriptor
valueObject
Returns
TypeDescription
DedicatedResources.Builder
Overrides

setMachineSpec(MachineSpec value)

public DedicatedResources.Builder setMachineSpec(MachineSpec value)

Required. Immutable. The specification of a single machine used by the prediction.

.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
valueMachineSpec
Returns
TypeDescription
DedicatedResources.Builder

setMachineSpec(MachineSpec.Builder builderForValue)

public DedicatedResources.Builder setMachineSpec(MachineSpec.Builder builderForValue)

Required. Immutable. The specification of a single machine used by the prediction.

.google.cloud.aiplatform.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
builderForValueMachineSpec.Builder
Returns
TypeDescription
DedicatedResources.Builder

setMaxReplicaCount(int value)

public DedicatedResources.Builder setMaxReplicaCount(int value)

Immutable. The maximum number of replicas this DeployedModel may be deployed on when the traffic against it increases. If the requested value is too large, the deployment will error, but if deployment succeeds then the ability to scale the model to that many replicas is guaranteed (barring service outages). If traffic against the DeployedModel increases beyond what its replicas at maximum may handle, a portion of the traffic will be dropped. If this value is not provided, will use min_replica_count as the default value. The value of this field impacts the charge against Vertex CPU and GPU quotas. Specifically, you will be charged for (max_replica_count * number of cores in the selected machine type) and (max_replica_count * number of GPUs per replica in the selected machine type).

int32 max_replica_count = 3 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
valueint

The maxReplicaCount to set.

Returns
TypeDescription
DedicatedResources.Builder

This builder for chaining.

setMinReplicaCount(int value)

public DedicatedResources.Builder setMinReplicaCount(int value)

Required. Immutable. The minimum number of machine replicas this DeployedModel will be always deployed on. This value must be greater than or equal to 1. If traffic against the DeployedModel increases, it may dynamically be deployed onto more replicas, and as traffic decreases, some of these extra replicas may be freed.

int32 min_replica_count = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
valueint

The minReplicaCount to set.

Returns
TypeDescription
DedicatedResources.Builder

This builder for chaining.

setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)

public DedicatedResources.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters
NameDescription
fieldFieldDescriptor
indexint
valueObject
Returns
TypeDescription
DedicatedResources.Builder
Overrides

setUnknownFields(UnknownFieldSet unknownFields)

public final DedicatedResources.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter
NameDescription
unknownFieldsUnknownFieldSet
Returns
TypeDescription
DedicatedResources.Builder
Overrides