Enum ExplanationMetadata.InputMetadata.Encoding (3.6.0)

public enum ExplanationMetadata.InputMetadata.Encoding extends Enum<ExplanationMetadata.InputMetadata.Encoding> implements ProtocolMessageEnum

Defines how a feature is encoded. Defaults to IDENTITY.

Protobuf enum google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata.Encoding

Implements

ProtocolMessageEnum

Static Fields

NameDescription
BAG_OF_FEATURES

The tensor represents a bag of features where each index maps to a feature. InputMetadata.index_feature_mapping must be provided for this encoding. For example: <code><code> input = [27, 6.0, 150] index_feature_mapping = ["age", "height", "weight"] </code></code>

BAG_OF_FEATURES = 2;

BAG_OF_FEATURES_SPARSE

The tensor represents a bag of features where each index maps to a feature. Zero values in the tensor indicates feature being non-existent. InputMetadata.index_feature_mapping must be provided for this encoding. For example: <code><code> input = [2, 0, 5, 0, 1] index_feature_mapping = ["a", "b", "c", "d", "e"] </code></code>

BAG_OF_FEATURES_SPARSE = 3;

BAG_OF_FEATURES_SPARSE_VALUE

The tensor represents a bag of features where each index maps to a feature. Zero values in the tensor indicates feature being non-existent. InputMetadata.index_feature_mapping must be provided for this encoding. For example: <code><code> input = [2, 0, 5, 0, 1] index_feature_mapping = ["a", "b", "c", "d", "e"] </code></code>

BAG_OF_FEATURES_SPARSE = 3;

BAG_OF_FEATURES_VALUE

The tensor represents a bag of features where each index maps to a feature. InputMetadata.index_feature_mapping must be provided for this encoding. For example: <code><code> input = [27, 6.0, 150] index_feature_mapping = ["age", "height", "weight"] </code></code>

BAG_OF_FEATURES = 2;

COMBINED_EMBEDDING

The tensor is encoded into a 1-dimensional array represented by an encoded tensor. InputMetadata.encoded_tensor_name must be provided for this encoding. For example: <code><code> input = ["This", "is", "a", "test", "."] encoded = [0.1, 0.2, 0.3, 0.4, 0.5] </code></code>

COMBINED_EMBEDDING = 5;

COMBINED_EMBEDDING_VALUE

The tensor is encoded into a 1-dimensional array represented by an encoded tensor. InputMetadata.encoded_tensor_name must be provided for this encoding. For example: <code><code> input = ["This", "is", "a", "test", "."] encoded = [0.1, 0.2, 0.3, 0.4, 0.5] </code></code>

COMBINED_EMBEDDING = 5;

CONCAT_EMBEDDING

Select this encoding when the input tensor is encoded into a 2-dimensional array represented by an encoded tensor. InputMetadata.encoded_tensor_name must be provided for this encoding. The first dimension of the encoded tensor's shape is the same as the input tensor's shape. For example: <code><code> input = ["This", "is", "a", "test", "."] encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], [0.2, 0.1, 0.4, 0.3, 0.5], [0.5, 0.1, 0.3, 0.5, 0.4], [0.5, 0.3, 0.1, 0.2, 0.4], [0.4, 0.3, 0.2, 0.5, 0.1]] </code></code>

CONCAT_EMBEDDING = 6;

CONCAT_EMBEDDING_VALUE

Select this encoding when the input tensor is encoded into a 2-dimensional array represented by an encoded tensor. InputMetadata.encoded_tensor_name must be provided for this encoding. The first dimension of the encoded tensor's shape is the same as the input tensor's shape. For example: <code><code> input = ["This", "is", "a", "test", "."] encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], [0.2, 0.1, 0.4, 0.3, 0.5], [0.5, 0.1, 0.3, 0.5, 0.4], [0.5, 0.3, 0.1, 0.2, 0.4], [0.4, 0.3, 0.2, 0.5, 0.1]] </code></code>

CONCAT_EMBEDDING = 6;

ENCODING_UNSPECIFIED

Default value. This is the same as IDENTITY.

ENCODING_UNSPECIFIED = 0;

ENCODING_UNSPECIFIED_VALUE

Default value. This is the same as IDENTITY.

ENCODING_UNSPECIFIED = 0;

IDENTITY

The tensor represents one feature.

IDENTITY = 1;

IDENTITY_VALUE

The tensor represents one feature.

IDENTITY = 1;

INDICATOR

The tensor is a list of binaries representing whether a feature exists or not (1 indicates existence). InputMetadata.index_feature_mapping must be provided for this encoding. For example: <code><code> input = [1, 0, 1, 0, 1] index_feature_mapping = ["a", "b", "c", "d", "e"] </code></code>

INDICATOR = 4;

INDICATOR_VALUE

The tensor is a list of binaries representing whether a feature exists or not (1 indicates existence). InputMetadata.index_feature_mapping must be provided for this encoding. For example: <code><code> input = [1, 0, 1, 0, 1] index_feature_mapping = ["a", "b", "c", "d", "e"] </code></code>

INDICATOR = 4;

UNRECOGNIZED

Static Methods

NameDescription
forNumber(int value)
getDescriptor()
internalGetValueMap()
valueOf(Descriptors.EnumValueDescriptor desc)
valueOf(int value)

Deprecated. Use #forNumber(int) instead.

valueOf(String name)
values()

Methods

NameDescription
getDescriptorForType()
getNumber()
getValueDescriptor()