Interface ModelDeploymentMonitoringJobOrBuilder (3.4.0)

public interface ModelDeploymentMonitoringJobOrBuilder extends MessageOrBuilder

Implements

MessageOrBuilder

Methods

containsLabels(String key)

public abstract boolean containsLabels(String key)

The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.

map<string, string> labels = 11;

Parameter
NameDescription
keyString
Returns
TypeDescription
boolean

getAnalysisInstanceSchemaUri()

public abstract String getAnalysisInstanceSchemaUri()

YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze. If this field is empty, all the feature data types are inferred from predict_instance_schema_uri, meaning that TFDV will use the data in the exact format(data type) as prediction request/response. If there are any data type differences between predict instance and TFDV instance, this field can be used to override the schema. For models trained with Vertex AI, this field must be set as all the fields in predict instance formatted as string.

string analysis_instance_schema_uri = 16;

Returns
TypeDescription
String

The analysisInstanceSchemaUri.

getAnalysisInstanceSchemaUriBytes()

public abstract ByteString getAnalysisInstanceSchemaUriBytes()

YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze. If this field is empty, all the feature data types are inferred from predict_instance_schema_uri, meaning that TFDV will use the data in the exact format(data type) as prediction request/response. If there are any data type differences between predict instance and TFDV instance, this field can be used to override the schema. For models trained with Vertex AI, this field must be set as all the fields in predict instance formatted as string.

string analysis_instance_schema_uri = 16;

Returns
TypeDescription
ByteString

The bytes for analysisInstanceSchemaUri.

getBigqueryTables(int index)

public abstract ModelDeploymentMonitoringBigQueryTable getBigqueryTables(int index)

Output only. The created bigquery tables for the job under customer project. Customer could do their own query & analysis. There could be 4 log tables in maximum:

  1. Training data logging predict request/response
  2. Serving data logging predict request/response

repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint
Returns
TypeDescription
ModelDeploymentMonitoringBigQueryTable

getBigqueryTablesCount()

public abstract int getBigqueryTablesCount()

Output only. The created bigquery tables for the job under customer project. Customer could do their own query & analysis. There could be 4 log tables in maximum:

  1. Training data logging predict request/response
  2. Serving data logging predict request/response

repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
int

getBigqueryTablesList()

public abstract List<ModelDeploymentMonitoringBigQueryTable> getBigqueryTablesList()

Output only. The created bigquery tables for the job under customer project. Customer could do their own query & analysis. There could be 4 log tables in maximum:

  1. Training data logging predict request/response
  2. Serving data logging predict request/response

repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
List<ModelDeploymentMonitoringBigQueryTable>

getBigqueryTablesOrBuilder(int index)

public abstract ModelDeploymentMonitoringBigQueryTableOrBuilder getBigqueryTablesOrBuilder(int index)

Output only. The created bigquery tables for the job under customer project. Customer could do their own query & analysis. There could be 4 log tables in maximum:

  1. Training data logging predict request/response
  2. Serving data logging predict request/response

repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint
Returns
TypeDescription
ModelDeploymentMonitoringBigQueryTableOrBuilder

getBigqueryTablesOrBuilderList()

public abstract List<? extends ModelDeploymentMonitoringBigQueryTableOrBuilder> getBigqueryTablesOrBuilderList()

Output only. The created bigquery tables for the job under customer project. Customer could do their own query & analysis. There could be 4 log tables in maximum:

  1. Training data logging predict request/response
  2. Serving data logging predict request/response

repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
List<? extends com.google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringBigQueryTableOrBuilder>

getCreateTime()

public abstract Timestamp getCreateTime()

Output only. Timestamp when this ModelDeploymentMonitoringJob was created.

.google.protobuf.Timestamp create_time = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Timestamp

The createTime.

getCreateTimeOrBuilder()

public abstract TimestampOrBuilder getCreateTimeOrBuilder()

Output only. Timestamp when this ModelDeploymentMonitoringJob was created.

.google.protobuf.Timestamp create_time = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
TimestampOrBuilder

getDisplayName()

public abstract String getDisplayName()

Required. The user-defined name of the ModelDeploymentMonitoringJob. The name can be up to 128 characters long and can be consist of any UTF-8 characters. Display name of a ModelDeploymentMonitoringJob.

string display_name = 2 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
String

The displayName.

getDisplayNameBytes()

public abstract ByteString getDisplayNameBytes()

Required. The user-defined name of the ModelDeploymentMonitoringJob. The name can be up to 128 characters long and can be consist of any UTF-8 characters. Display name of a ModelDeploymentMonitoringJob.

string display_name = 2 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
ByteString

The bytes for displayName.

getEnableMonitoringPipelineLogs()

public abstract boolean getEnableMonitoringPipelineLogs()

If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected. Please note the logs incur cost, which are subject to Cloud Logging pricing.

bool enable_monitoring_pipeline_logs = 22;

Returns
TypeDescription
boolean

The enableMonitoringPipelineLogs.

getEncryptionSpec()

public abstract EncryptionSpec getEncryptionSpec()

Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If set, this ModelDeploymentMonitoringJob and all sub-resources of this ModelDeploymentMonitoringJob will be secured by this key.

.google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 21;

Returns
TypeDescription
EncryptionSpec

The encryptionSpec.

getEncryptionSpecOrBuilder()

public abstract EncryptionSpecOrBuilder getEncryptionSpecOrBuilder()

Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If set, this ModelDeploymentMonitoringJob and all sub-resources of this ModelDeploymentMonitoringJob will be secured by this key.

.google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 21;

Returns
TypeDescription
EncryptionSpecOrBuilder

getEndpoint()

public abstract String getEndpoint()

Required. Endpoint resource name. Format: projects/{project}/locations/{location}/endpoints/{endpoint}

string endpoint = 3 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... }

Returns
TypeDescription
String

The endpoint.

getEndpointBytes()

public abstract ByteString getEndpointBytes()

Required. Endpoint resource name. Format: projects/{project}/locations/{location}/endpoints/{endpoint}

string endpoint = 3 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... }

Returns
TypeDescription
ByteString

The bytes for endpoint.

getError()

public abstract Status getError()

Output only. Only populated when the job's state is JOB_STATE_FAILED or JOB_STATE_CANCELLED.

.google.rpc.Status error = 23 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
com.google.rpc.Status

The error.

getErrorOrBuilder()

public abstract StatusOrBuilder getErrorOrBuilder()

Output only. Only populated when the job's state is JOB_STATE_FAILED or JOB_STATE_CANCELLED.

.google.rpc.Status error = 23 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
com.google.rpc.StatusOrBuilder

getLabels()

public abstract Map<String,String> getLabels()

Use #getLabelsMap() instead.

Returns
TypeDescription
Map<String,String>

getLabelsCount()

public abstract int getLabelsCount()

The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.

map<string, string> labels = 11;

Returns
TypeDescription
int

getLabelsMap()

public abstract Map<String,String> getLabelsMap()

The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.

map<string, string> labels = 11;

Returns
TypeDescription
Map<String,String>

getLabelsOrDefault(String key, String defaultValue)

public abstract String getLabelsOrDefault(String key, String defaultValue)

The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.

map<string, string> labels = 11;

Parameters
NameDescription
keyString
defaultValueString
Returns
TypeDescription
String

getLabelsOrThrow(String key)

public abstract String getLabelsOrThrow(String key)

The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.

map<string, string> labels = 11;

Parameter
NameDescription
keyString
Returns
TypeDescription
String

getLatestMonitoringPipelineMetadata()

public abstract ModelDeploymentMonitoringJob.LatestMonitoringPipelineMetadata getLatestMonitoringPipelineMetadata()

Output only. Latest triggered monitoring pipeline metadata.

.google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.LatestMonitoringPipelineMetadata latest_monitoring_pipeline_metadata = 25 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
ModelDeploymentMonitoringJob.LatestMonitoringPipelineMetadata

The latestMonitoringPipelineMetadata.

getLatestMonitoringPipelineMetadataOrBuilder()

public abstract ModelDeploymentMonitoringJob.LatestMonitoringPipelineMetadataOrBuilder getLatestMonitoringPipelineMetadataOrBuilder()

Output only. Latest triggered monitoring pipeline metadata.

.google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.LatestMonitoringPipelineMetadata latest_monitoring_pipeline_metadata = 25 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
ModelDeploymentMonitoringJob.LatestMonitoringPipelineMetadataOrBuilder

getLogTtl()

public abstract Duration getLogTtl()

The TTL of BigQuery tables in user projects which stores logs. A day is the basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. { second: 3600} indicates ttl = 1 day.

.google.protobuf.Duration log_ttl = 17;

Returns
TypeDescription
Duration

The logTtl.

getLogTtlOrBuilder()

public abstract DurationOrBuilder getLogTtlOrBuilder()

The TTL of BigQuery tables in user projects which stores logs. A day is the basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. { second: 3600} indicates ttl = 1 day.

.google.protobuf.Duration log_ttl = 17;

Returns
TypeDescription
DurationOrBuilder

getLoggingSamplingStrategy()

public abstract SamplingStrategy getLoggingSamplingStrategy()

Required. Sample Strategy for logging.

.google.cloud.aiplatform.v1beta1.SamplingStrategy logging_sampling_strategy = 8 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
SamplingStrategy

The loggingSamplingStrategy.

getLoggingSamplingStrategyOrBuilder()

public abstract SamplingStrategyOrBuilder getLoggingSamplingStrategyOrBuilder()

Required. Sample Strategy for logging.

.google.cloud.aiplatform.v1beta1.SamplingStrategy logging_sampling_strategy = 8 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
SamplingStrategyOrBuilder

getModelDeploymentMonitoringObjectiveConfigs(int index)

public abstract ModelDeploymentMonitoringObjectiveConfig getModelDeploymentMonitoringObjectiveConfigs(int index)

Required. The config for monitoring objectives. This is a per DeployedModel config. Each DeployedModel needs to be configured separately.

repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];

Parameter
NameDescription
indexint
Returns
TypeDescription
ModelDeploymentMonitoringObjectiveConfig

getModelDeploymentMonitoringObjectiveConfigsCount()

public abstract int getModelDeploymentMonitoringObjectiveConfigsCount()

Required. The config for monitoring objectives. This is a per DeployedModel config. Each DeployedModel needs to be configured separately.

repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
int

getModelDeploymentMonitoringObjectiveConfigsList()

public abstract List<ModelDeploymentMonitoringObjectiveConfig> getModelDeploymentMonitoringObjectiveConfigsList()

Required. The config for monitoring objectives. This is a per DeployedModel config. Each DeployedModel needs to be configured separately.

repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
List<ModelDeploymentMonitoringObjectiveConfig>

getModelDeploymentMonitoringObjectiveConfigsOrBuilder(int index)

public abstract ModelDeploymentMonitoringObjectiveConfigOrBuilder getModelDeploymentMonitoringObjectiveConfigsOrBuilder(int index)

Required. The config for monitoring objectives. This is a per DeployedModel config. Each DeployedModel needs to be configured separately.

repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];

Parameter
NameDescription
indexint
Returns
TypeDescription
ModelDeploymentMonitoringObjectiveConfigOrBuilder

getModelDeploymentMonitoringObjectiveConfigsOrBuilderList()

public abstract List<? extends ModelDeploymentMonitoringObjectiveConfigOrBuilder> getModelDeploymentMonitoringObjectiveConfigsOrBuilderList()

Required. The config for monitoring objectives. This is a per DeployedModel config. Each DeployedModel needs to be configured separately.

repeated .google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
List<? extends com.google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringObjectiveConfigOrBuilder>

getModelDeploymentMonitoringScheduleConfig()

public abstract ModelDeploymentMonitoringScheduleConfig getModelDeploymentMonitoringScheduleConfig()

Required. Schedule config for running the monitoring job.

.google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringScheduleConfig model_deployment_monitoring_schedule_config = 7 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
ModelDeploymentMonitoringScheduleConfig

The modelDeploymentMonitoringScheduleConfig.

getModelDeploymentMonitoringScheduleConfigOrBuilder()

public abstract ModelDeploymentMonitoringScheduleConfigOrBuilder getModelDeploymentMonitoringScheduleConfigOrBuilder()

Required. Schedule config for running the monitoring job.

.google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringScheduleConfig model_deployment_monitoring_schedule_config = 7 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
ModelDeploymentMonitoringScheduleConfigOrBuilder

getModelMonitoringAlertConfig()

public abstract ModelMonitoringAlertConfig getModelMonitoringAlertConfig()

Alert config for model monitoring.

.google.cloud.aiplatform.v1beta1.ModelMonitoringAlertConfig model_monitoring_alert_config = 15;

Returns
TypeDescription
ModelMonitoringAlertConfig

The modelMonitoringAlertConfig.

getModelMonitoringAlertConfigOrBuilder()

public abstract ModelMonitoringAlertConfigOrBuilder getModelMonitoringAlertConfigOrBuilder()

Alert config for model monitoring.

.google.cloud.aiplatform.v1beta1.ModelMonitoringAlertConfig model_monitoring_alert_config = 15;

Returns
TypeDescription
ModelMonitoringAlertConfigOrBuilder

getName()

public abstract String getName()

Output only. Resource name of a ModelDeploymentMonitoringJob.

string name = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
String

The name.

getNameBytes()

public abstract ByteString getNameBytes()

Output only. Resource name of a ModelDeploymentMonitoringJob.

string name = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
ByteString

The bytes for name.

getNextScheduleTime()

public abstract Timestamp getNextScheduleTime()

Output only. Timestamp when this monitoring pipeline will be scheduled to run for the next round.

.google.protobuf.Timestamp next_schedule_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Timestamp

The nextScheduleTime.

getNextScheduleTimeOrBuilder()

public abstract TimestampOrBuilder getNextScheduleTimeOrBuilder()

Output only. Timestamp when this monitoring pipeline will be scheduled to run for the next round.

.google.protobuf.Timestamp next_schedule_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
TimestampOrBuilder

getPredictInstanceSchemaUri()

public abstract String getPredictInstanceSchemaUri()

YAML schema file uri describing the format of a single instance, which are given to format this Endpoint's prediction (and explanation). If not set, we will generate predict schema from collected predict requests.

string predict_instance_schema_uri = 9;

Returns
TypeDescription
String

The predictInstanceSchemaUri.

getPredictInstanceSchemaUriBytes()

public abstract ByteString getPredictInstanceSchemaUriBytes()

YAML schema file uri describing the format of a single instance, which are given to format this Endpoint's prediction (and explanation). If not set, we will generate predict schema from collected predict requests.

string predict_instance_schema_uri = 9;

Returns
TypeDescription
ByteString

The bytes for predictInstanceSchemaUri.

getSamplePredictInstance()

public abstract Value getSamplePredictInstance()

Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob.predict_instance_schema_uri. If not set, we will generate predict schema from collected predict requests.

.google.protobuf.Value sample_predict_instance = 19;

Returns
TypeDescription
Value

The samplePredictInstance.

getSamplePredictInstanceOrBuilder()

public abstract ValueOrBuilder getSamplePredictInstanceOrBuilder()

Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob.predict_instance_schema_uri. If not set, we will generate predict schema from collected predict requests.

.google.protobuf.Value sample_predict_instance = 19;

Returns
TypeDescription
ValueOrBuilder

getScheduleState()

public abstract ModelDeploymentMonitoringJob.MonitoringScheduleState getScheduleState()

Output only. Schedule state when the monitoring job is in Running state.

.google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.MonitoringScheduleState schedule_state = 5 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
ModelDeploymentMonitoringJob.MonitoringScheduleState

The scheduleState.

getScheduleStateValue()

public abstract int getScheduleStateValue()

Output only. Schedule state when the monitoring job is in Running state.

.google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.MonitoringScheduleState schedule_state = 5 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
int

The enum numeric value on the wire for scheduleState.

getState()

public abstract JobState getState()

Output only. The detailed state of the monitoring job. When the job is still creating, the state will be 'PENDING'. Once the job is successfully created, the state will be 'RUNNING'. Pause the job, the state will be 'PAUSED'. Resume the job, the state will return to 'RUNNING'.

.google.cloud.aiplatform.v1beta1.JobState state = 4 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
JobState

The state.

getStateValue()

public abstract int getStateValue()

Output only. The detailed state of the monitoring job. When the job is still creating, the state will be 'PENDING'. Once the job is successfully created, the state will be 'RUNNING'. Pause the job, the state will be 'PAUSED'. Resume the job, the state will return to 'RUNNING'.

.google.cloud.aiplatform.v1beta1.JobState state = 4 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
int

The enum numeric value on the wire for state.

getStatsAnomaliesBaseDirectory()

public abstract GcsDestination getStatsAnomaliesBaseDirectory()

Stats anomalies base folder path.

.google.cloud.aiplatform.v1beta1.GcsDestination stats_anomalies_base_directory = 20;

Returns
TypeDescription
GcsDestination

The statsAnomaliesBaseDirectory.

getStatsAnomaliesBaseDirectoryOrBuilder()

public abstract GcsDestinationOrBuilder getStatsAnomaliesBaseDirectoryOrBuilder()

Stats anomalies base folder path.

.google.cloud.aiplatform.v1beta1.GcsDestination stats_anomalies_base_directory = 20;

Returns
TypeDescription
GcsDestinationOrBuilder

getUpdateTime()

public abstract Timestamp getUpdateTime()

Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most recently.

.google.protobuf.Timestamp update_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Timestamp

The updateTime.

getUpdateTimeOrBuilder()

public abstract TimestampOrBuilder getUpdateTimeOrBuilder()

Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most recently.

.google.protobuf.Timestamp update_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
TimestampOrBuilder

hasCreateTime()

public abstract boolean hasCreateTime()

Output only. Timestamp when this ModelDeploymentMonitoringJob was created.

.google.protobuf.Timestamp create_time = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
boolean

Whether the createTime field is set.

hasEncryptionSpec()

public abstract boolean hasEncryptionSpec()

Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If set, this ModelDeploymentMonitoringJob and all sub-resources of this ModelDeploymentMonitoringJob will be secured by this key.

.google.cloud.aiplatform.v1beta1.EncryptionSpec encryption_spec = 21;

Returns
TypeDescription
boolean

Whether the encryptionSpec field is set.

hasError()

public abstract boolean hasError()

Output only. Only populated when the job's state is JOB_STATE_FAILED or JOB_STATE_CANCELLED.

.google.rpc.Status error = 23 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
boolean

Whether the error field is set.

hasLatestMonitoringPipelineMetadata()

public abstract boolean hasLatestMonitoringPipelineMetadata()

Output only. Latest triggered monitoring pipeline metadata.

.google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringJob.LatestMonitoringPipelineMetadata latest_monitoring_pipeline_metadata = 25 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
boolean

Whether the latestMonitoringPipelineMetadata field is set.

hasLogTtl()

public abstract boolean hasLogTtl()

The TTL of BigQuery tables in user projects which stores logs. A day is the basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. { second: 3600} indicates ttl = 1 day.

.google.protobuf.Duration log_ttl = 17;

Returns
TypeDescription
boolean

Whether the logTtl field is set.

hasLoggingSamplingStrategy()

public abstract boolean hasLoggingSamplingStrategy()

Required. Sample Strategy for logging.

.google.cloud.aiplatform.v1beta1.SamplingStrategy logging_sampling_strategy = 8 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
boolean

Whether the loggingSamplingStrategy field is set.

hasModelDeploymentMonitoringScheduleConfig()

public abstract boolean hasModelDeploymentMonitoringScheduleConfig()

Required. Schedule config for running the monitoring job.

.google.cloud.aiplatform.v1beta1.ModelDeploymentMonitoringScheduleConfig model_deployment_monitoring_schedule_config = 7 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
boolean

Whether the modelDeploymentMonitoringScheduleConfig field is set.

hasModelMonitoringAlertConfig()

public abstract boolean hasModelMonitoringAlertConfig()

Alert config for model monitoring.

.google.cloud.aiplatform.v1beta1.ModelMonitoringAlertConfig model_monitoring_alert_config = 15;

Returns
TypeDescription
boolean

Whether the modelMonitoringAlertConfig field is set.

hasNextScheduleTime()

public abstract boolean hasNextScheduleTime()

Output only. Timestamp when this monitoring pipeline will be scheduled to run for the next round.

.google.protobuf.Timestamp next_schedule_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
boolean

Whether the nextScheduleTime field is set.

hasSamplePredictInstance()

public abstract boolean hasSamplePredictInstance()

Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob.predict_instance_schema_uri. If not set, we will generate predict schema from collected predict requests.

.google.protobuf.Value sample_predict_instance = 19;

Returns
TypeDescription
boolean

Whether the samplePredictInstance field is set.

hasStatsAnomaliesBaseDirectory()

public abstract boolean hasStatsAnomaliesBaseDirectory()

Stats anomalies base folder path.

.google.cloud.aiplatform.v1beta1.GcsDestination stats_anomalies_base_directory = 20;

Returns
TypeDescription
boolean

Whether the statsAnomaliesBaseDirectory field is set.

hasUpdateTime()

public abstract boolean hasUpdateTime()

Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most recently.

.google.protobuf.Timestamp update_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
boolean

Whether the updateTime field is set.