- 3.52.0 (latest)
- 3.50.0
- 3.49.0
- 3.48.0
- 3.47.0
- 3.46.0
- 3.45.0
- 3.44.0
- 3.43.0
- 3.42.0
- 3.41.0
- 3.40.0
- 3.38.0
- 3.37.0
- 3.36.0
- 3.35.0
- 3.34.0
- 3.33.0
- 3.32.0
- 3.31.0
- 3.30.0
- 3.29.0
- 3.28.0
- 3.25.0
- 3.24.0
- 3.23.0
- 3.22.0
- 3.21.0
- 3.20.0
- 3.19.0
- 3.18.0
- 3.17.0
- 3.16.0
- 3.15.0
- 3.14.0
- 3.13.0
- 3.12.0
- 3.11.0
- 3.10.0
- 3.9.0
- 3.8.0
- 3.7.0
- 3.6.0
- 3.5.0
- 3.4.2
- 3.3.0
- 3.2.0
- 3.0.0
- 2.9.8
- 2.8.9
- 2.7.4
- 2.5.3
- 2.4.0
public static final class ExplanationMetadata.OutputMetadata.Builder extends GeneratedMessageV3.Builder<ExplanationMetadata.OutputMetadata.Builder> implements ExplanationMetadata.OutputMetadataOrBuilder
Metadata of the prediction output to be explained.
Protobuf type google.cloud.aiplatform.v1.ExplanationMetadata.OutputMetadata
Inheritance
Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > ExplanationMetadata.OutputMetadata.BuilderImplements
ExplanationMetadata.OutputMetadataOrBuilderStatic Methods
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()
Returns | |
---|---|
Type | Description |
Descriptor |
Methods
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
public ExplanationMetadata.OutputMetadata.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters | |
---|---|
Name | Description |
field | FieldDescriptor |
value | Object |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
build()
public ExplanationMetadata.OutputMetadata build()
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata |
buildPartial()
public ExplanationMetadata.OutputMetadata buildPartial()
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata |
clear()
public ExplanationMetadata.OutputMetadata.Builder clear()
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
clearDisplayNameMapping()
public ExplanationMetadata.OutputMetadata.Builder clearDisplayNameMapping()
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
clearDisplayNameMappingKey()
public ExplanationMetadata.OutputMetadata.Builder clearDisplayNameMappingKey()
Specify a field name in the prediction to look for the display name.
Use this if the prediction contains the display names for the outputs.
The display names in the prediction must have the same shape of the outputs, so that it can be located by Attribution.output_index for a specific output.
string display_name_mapping_key = 2;
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder | This builder for chaining. |
clearField(Descriptors.FieldDescriptor field)
public ExplanationMetadata.OutputMetadata.Builder clearField(Descriptors.FieldDescriptor field)
Parameter | |
---|---|
Name | Description |
field | FieldDescriptor |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
clearIndexDisplayNameMapping()
public ExplanationMetadata.OutputMetadata.Builder clearIndexDisplayNameMapping()
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values.
The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
clearOneof(Descriptors.OneofDescriptor oneof)
public ExplanationMetadata.OutputMetadata.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter | |
---|---|
Name | Description |
oneof | OneofDescriptor |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
clearOutputTensorName()
public ExplanationMetadata.OutputMetadata.Builder clearOutputTensorName()
Name of the output tensor. Required and is only applicable to Vertex AI provided images for Tensorflow.
string output_tensor_name = 3;
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder | This builder for chaining. |
clone()
public ExplanationMetadata.OutputMetadata.Builder clone()
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
getDefaultInstanceForType()
public ExplanationMetadata.OutputMetadata getDefaultInstanceForType()
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata |
getDescriptorForType()
public Descriptors.Descriptor getDescriptorForType()
Returns | |
---|---|
Type | Description |
Descriptor |
getDisplayNameMappingCase()
public ExplanationMetadata.OutputMetadata.DisplayNameMappingCase getDisplayNameMappingCase()
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.DisplayNameMappingCase |
getDisplayNameMappingKey()
public String getDisplayNameMappingKey()
Specify a field name in the prediction to look for the display name.
Use this if the prediction contains the display names for the outputs.
The display names in the prediction must have the same shape of the outputs, so that it can be located by Attribution.output_index for a specific output.
string display_name_mapping_key = 2;
Returns | |
---|---|
Type | Description |
String | The displayNameMappingKey. |
getDisplayNameMappingKeyBytes()
public ByteString getDisplayNameMappingKeyBytes()
Specify a field name in the prediction to look for the display name.
Use this if the prediction contains the display names for the outputs.
The display names in the prediction must have the same shape of the outputs, so that it can be located by Attribution.output_index for a specific output.
string display_name_mapping_key = 2;
Returns | |
---|---|
Type | Description |
ByteString | The bytes for displayNameMappingKey. |
getIndexDisplayNameMapping()
public Value getIndexDisplayNameMapping()
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values.
The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Returns | |
---|---|
Type | Description |
Value | The indexDisplayNameMapping. |
getIndexDisplayNameMappingBuilder()
public Value.Builder getIndexDisplayNameMappingBuilder()
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values.
The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Returns | |
---|---|
Type | Description |
Builder |
getIndexDisplayNameMappingOrBuilder()
public ValueOrBuilder getIndexDisplayNameMappingOrBuilder()
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values.
The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Returns | |
---|---|
Type | Description |
ValueOrBuilder |
getOutputTensorName()
public String getOutputTensorName()
Name of the output tensor. Required and is only applicable to Vertex AI provided images for Tensorflow.
string output_tensor_name = 3;
Returns | |
---|---|
Type | Description |
String | The outputTensorName. |
getOutputTensorNameBytes()
public ByteString getOutputTensorNameBytes()
Name of the output tensor. Required and is only applicable to Vertex AI provided images for Tensorflow.
string output_tensor_name = 3;
Returns | |
---|---|
Type | Description |
ByteString | The bytes for outputTensorName. |
hasDisplayNameMappingKey()
public boolean hasDisplayNameMappingKey()
Specify a field name in the prediction to look for the display name.
Use this if the prediction contains the display names for the outputs.
The display names in the prediction must have the same shape of the outputs, so that it can be located by Attribution.output_index for a specific output.
string display_name_mapping_key = 2;
Returns | |
---|---|
Type | Description |
boolean | Whether the displayNameMappingKey field is set. |
hasIndexDisplayNameMapping()
public boolean hasIndexDisplayNameMapping()
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values.
The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Returns | |
---|---|
Type | Description |
boolean | Whether the indexDisplayNameMapping field is set. |
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns | |
---|---|
Type | Description |
FieldAccessorTable |
isInitialized()
public final boolean isInitialized()
Returns | |
---|---|
Type | Description |
boolean |
mergeFrom(ExplanationMetadata.OutputMetadata other)
public ExplanationMetadata.OutputMetadata.Builder mergeFrom(ExplanationMetadata.OutputMetadata other)
Parameter | |
---|---|
Name | Description |
other | ExplanationMetadata.OutputMetadata |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public ExplanationMetadata.OutputMetadata.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters | |
---|---|
Name | Description |
input | CodedInputStream |
extensionRegistry | ExtensionRegistryLite |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
Exceptions | |
---|---|
Type | Description |
IOException |
mergeFrom(Message other)
public ExplanationMetadata.OutputMetadata.Builder mergeFrom(Message other)
Parameter | |
---|---|
Name | Description |
other | Message |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
mergeIndexDisplayNameMapping(Value value)
public ExplanationMetadata.OutputMetadata.Builder mergeIndexDisplayNameMapping(Value value)
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values.
The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Parameter | |
---|---|
Name | Description |
value | Value |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
mergeUnknownFields(UnknownFieldSet unknownFields)
public final ExplanationMetadata.OutputMetadata.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter | |
---|---|
Name | Description |
unknownFields | UnknownFieldSet |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
setDisplayNameMappingKey(String value)
public ExplanationMetadata.OutputMetadata.Builder setDisplayNameMappingKey(String value)
Specify a field name in the prediction to look for the display name.
Use this if the prediction contains the display names for the outputs.
The display names in the prediction must have the same shape of the outputs, so that it can be located by Attribution.output_index for a specific output.
string display_name_mapping_key = 2;
Parameter | |
---|---|
Name | Description |
value | String The displayNameMappingKey to set. |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder | This builder for chaining. |
setDisplayNameMappingKeyBytes(ByteString value)
public ExplanationMetadata.OutputMetadata.Builder setDisplayNameMappingKeyBytes(ByteString value)
Specify a field name in the prediction to look for the display name.
Use this if the prediction contains the display names for the outputs.
The display names in the prediction must have the same shape of the outputs, so that it can be located by Attribution.output_index for a specific output.
string display_name_mapping_key = 2;
Parameter | |
---|---|
Name | Description |
value | ByteString The bytes for displayNameMappingKey to set. |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder | This builder for chaining. |
setField(Descriptors.FieldDescriptor field, Object value)
public ExplanationMetadata.OutputMetadata.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters | |
---|---|
Name | Description |
field | FieldDescriptor |
value | Object |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
setIndexDisplayNameMapping(Value value)
public ExplanationMetadata.OutputMetadata.Builder setIndexDisplayNameMapping(Value value)
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values.
The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Parameter | |
---|---|
Name | Description |
value | Value |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
setIndexDisplayNameMapping(Value.Builder builderForValue)
public ExplanationMetadata.OutputMetadata.Builder setIndexDisplayNameMapping(Value.Builder builderForValue)
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values.
The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Parameter | |
---|---|
Name | Description |
builderForValue | Builder |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
setOutputTensorName(String value)
public ExplanationMetadata.OutputMetadata.Builder setOutputTensorName(String value)
Name of the output tensor. Required and is only applicable to Vertex AI provided images for Tensorflow.
string output_tensor_name = 3;
Parameter | |
---|---|
Name | Description |
value | String The outputTensorName to set. |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder | This builder for chaining. |
setOutputTensorNameBytes(ByteString value)
public ExplanationMetadata.OutputMetadata.Builder setOutputTensorNameBytes(ByteString value)
Name of the output tensor. Required and is only applicable to Vertex AI provided images for Tensorflow.
string output_tensor_name = 3;
Parameter | |
---|---|
Name | Description |
value | ByteString The bytes for outputTensorName to set. |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder | This builder for chaining. |
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
public ExplanationMetadata.OutputMetadata.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters | |
---|---|
Name | Description |
field | FieldDescriptor |
index | int |
value | Object |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |
setUnknownFields(UnknownFieldSet unknownFields)
public final ExplanationMetadata.OutputMetadata.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter | |
---|---|
Name | Description |
unknownFields | UnknownFieldSet |
Returns | |
---|---|
Type | Description |
ExplanationMetadata.OutputMetadata.Builder |