public final class DeployedModel extends GeneratedMessageV3 implements DeployedModelOrBuilder
A deployment of a Model. Endpoints contain one or more DeployedModels.
Protobuf type google.cloud.aiplatform.v1.DeployedModel
Static Fields
public static final int AUTOMATIC_RESOURCES_FIELD_NUMBER
Field Value
public static final int CREATE_TIME_FIELD_NUMBER
Field Value
public static final int DEDICATED_RESOURCES_FIELD_NUMBER
Field Value
public static final int DISABLE_CONTAINER_LOGGING_FIELD_NUMBER
Field Value
public static final int DISPLAY_NAME_FIELD_NUMBER
Field Value
public static final int ENABLE_ACCESS_LOGGING_FIELD_NUMBER
Field Value
public static final int EXPLANATION_SPEC_FIELD_NUMBER
Field Value
public static final int ID_FIELD_NUMBER
Field Value
public static final int MODEL_FIELD_NUMBER
Field Value
public static final int MODEL_VERSION_ID_FIELD_NUMBER
Field Value
public static final int PRIVATE_ENDPOINTS_FIELD_NUMBER
Field Value
public static final int SERVICE_ACCOUNT_FIELD_NUMBER
Field Value
Static Methods
public static DeployedModel getDefaultInstance()
Returns
public static final Descriptors.Descriptor getDescriptor()
Returns
public static DeployedModel.Builder newBuilder()
Returns
public static DeployedModel.Builder newBuilder(DeployedModel prototype)
Parameter
Returns
public static DeployedModel parseDelimitedFrom(InputStream input)
Parameter
Returns
Exceptions
public static DeployedModel parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static DeployedModel parseFrom(byte[] data)
Parameter
Name | Description |
data | byte[]
|
Returns
Exceptions
public static DeployedModel parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static DeployedModel parseFrom(ByteString data)
Parameter
Returns
Exceptions
public static DeployedModel parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static DeployedModel parseFrom(CodedInputStream input)
Parameter
Returns
Exceptions
public static DeployedModel parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static DeployedModel parseFrom(InputStream input)
Parameter
Returns
Exceptions
public static DeployedModel parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static DeployedModel parseFrom(ByteBuffer data)
Parameter
Returns
Exceptions
public static DeployedModel parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static Parser<DeployedModel> parser()
Returns
Methods
public boolean equals(Object obj)
Parameter
Returns
Overrides
public AutomaticResources getAutomaticResources()
A description of resources that to large degree are decided by Vertex
AI, and require only a modest additional configuration.
.google.cloud.aiplatform.v1.AutomaticResources automatic_resources = 8;
Returns
public AutomaticResourcesOrBuilder getAutomaticResourcesOrBuilder()
A description of resources that to large degree are decided by Vertex
AI, and require only a modest additional configuration.
.google.cloud.aiplatform.v1.AutomaticResources automatic_resources = 8;
Returns
public Timestamp getCreateTime()
Output only. Timestamp when the DeployedModel was created.
.google.protobuf.Timestamp create_time = 6 [(.google.api.field_behavior) = OUTPUT_ONLY];
Returns
public TimestampOrBuilder getCreateTimeOrBuilder()
Output only. Timestamp when the DeployedModel was created.
.google.protobuf.Timestamp create_time = 6 [(.google.api.field_behavior) = OUTPUT_ONLY];
Returns
public DedicatedResources getDedicatedResources()
A description of resources that are dedicated to the DeployedModel, and
that need a higher degree of manual configuration.
.google.cloud.aiplatform.v1.DedicatedResources dedicated_resources = 7;
Returns
public DedicatedResourcesOrBuilder getDedicatedResourcesOrBuilder()
A description of resources that are dedicated to the DeployedModel, and
that need a higher degree of manual configuration.
.google.cloud.aiplatform.v1.DedicatedResources dedicated_resources = 7;
Returns
public DeployedModel getDefaultInstanceForType()
Returns
public boolean getDisableContainerLogging()
For custom-trained Models and AutoML Tabular Models, the container of the
DeployedModel instances will send stderr
and stdout
streams to
Stackdriver Logging by default. Please note that the logs incur cost,
which are subject to Cloud Logging
pricing.
User can disable container logging by setting this flag to true.
bool disable_container_logging = 15;
Returns
Type | Description |
boolean | The disableContainerLogging.
|
public String getDisplayName()
The display name of the DeployedModel. If not provided upon creation,
the Model's display_name is used.
string display_name = 3;
Returns
Type | Description |
String | The displayName.
|
public ByteString getDisplayNameBytes()
The display name of the DeployedModel. If not provided upon creation,
the Model's display_name is used.
string display_name = 3;
Returns
Type | Description |
ByteString | The bytes for displayName.
|
public boolean getEnableAccessLogging()
If true, online prediction access logs are sent to StackDriver
Logging.
These logs are like standard server access logs, containing
information like timestamp and latency for each prediction request.
Note that Stackdriver logs may incur a cost, especially if your project
receives prediction requests at a high queries per second rate (QPS).
Estimate your costs before enabling this option.
bool enable_access_logging = 13;
Returns
Type | Description |
boolean | The enableAccessLogging.
|
public ExplanationSpec getExplanationSpec()
Explanation configuration for this DeployedModel.
When deploying a Model using
EndpointService.DeployModel,
this value overrides the value of
Model.explanation_spec.
All fields of
explanation_spec
are optional in the request. If a field of
explanation_spec
is not populated, the value of the same field of
Model.explanation_spec
is inherited. If the corresponding
Model.explanation_spec
is not populated, all fields of the
explanation_spec
will be used for the explanation configuration.
.google.cloud.aiplatform.v1.ExplanationSpec explanation_spec = 9;
Returns
public ExplanationSpecOrBuilder getExplanationSpecOrBuilder()
Explanation configuration for this DeployedModel.
When deploying a Model using
EndpointService.DeployModel,
this value overrides the value of
Model.explanation_spec.
All fields of
explanation_spec
are optional in the request. If a field of
explanation_spec
is not populated, the value of the same field of
Model.explanation_spec
is inherited. If the corresponding
Model.explanation_spec
is not populated, all fields of the
explanation_spec
will be used for the explanation configuration.
.google.cloud.aiplatform.v1.ExplanationSpec explanation_spec = 9;
Returns
Immutable. The ID of the DeployedModel. If not provided upon deployment,
Vertex AI will generate a value for this ID.
This value should be 1-10 characters, and valid characters are /[0-9]/.
string id = 1 [(.google.api.field_behavior) = IMMUTABLE];
Returns
public ByteString getIdBytes()
Immutable. The ID of the DeployedModel. If not provided upon deployment,
Vertex AI will generate a value for this ID.
This value should be 1-10 characters, and valid characters are /[0-9]/.
string id = 1 [(.google.api.field_behavior) = IMMUTABLE];
Returns
Required. The resource name of the Model that this is the deployment of.
Note that the Model may be in a different location than the DeployedModel's
Endpoint.
The resource name may contain version id or version alias to specify the
version, if no version is specified, the default version will be deployed.
string model = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... }
Returns
Type | Description |
String | The model.
|
public ByteString getModelBytes()
Required. The resource name of the Model that this is the deployment of.
Note that the Model may be in a different location than the DeployedModel's
Endpoint.
The resource name may contain version id or version alias to specify the
version, if no version is specified, the default version will be deployed.
string model = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.resource_reference) = { ... }
Returns
public String getModelVersionId()
Output only. The version ID of the model that is deployed.
string model_version_id = 18 [(.google.api.field_behavior) = OUTPUT_ONLY];
Returns
Type | Description |
String | The modelVersionId.
|
public ByteString getModelVersionIdBytes()
Output only. The version ID of the model that is deployed.
string model_version_id = 18 [(.google.api.field_behavior) = OUTPUT_ONLY];
Returns
Type | Description |
ByteString | The bytes for modelVersionId.
|
public Parser<DeployedModel> getParserForType()
Returns
Overrides
public DeployedModel.PredictionResourcesCase getPredictionResourcesCase()
Returns
public PrivateEndpoints getPrivateEndpoints()
Output only. Provide paths for users to send predict/explain/health
requests directly to the deployed model services running on Cloud via
private services access. This field is populated if
network is configured.
.google.cloud.aiplatform.v1.PrivateEndpoints private_endpoints = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
Returns
public PrivateEndpointsOrBuilder getPrivateEndpointsOrBuilder()
Output only. Provide paths for users to send predict/explain/health
requests directly to the deployed model services running on Cloud via
private services access. This field is populated if
network is configured.
.google.cloud.aiplatform.v1.PrivateEndpoints private_endpoints = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
Returns
public int getSerializedSize()
Returns
Overrides
public String getServiceAccount()
The service account that the DeployedModel's container runs as. Specify the
email address of the service account. If this service account is not
specified, the container runs as a service account that doesn't have access
to the resource project.
Users deploying the Model must have the iam.serviceAccounts.actAs
permission on this service account.
string service_account = 11;
Returns
Type | Description |
String | The serviceAccount.
|
public ByteString getServiceAccountBytes()
The service account that the DeployedModel's container runs as. Specify the
email address of the service account. If this service account is not
specified, the container runs as a service account that doesn't have access
to the resource project.
Users deploying the Model must have the iam.serviceAccounts.actAs
permission on this service account.
string service_account = 11;
Returns
Type | Description |
ByteString | The bytes for serviceAccount.
|
public final UnknownFieldSet getUnknownFields()
Returns
Overrides
public boolean hasAutomaticResources()
A description of resources that to large degree are decided by Vertex
AI, and require only a modest additional configuration.
.google.cloud.aiplatform.v1.AutomaticResources automatic_resources = 8;
Returns
Type | Description |
boolean | Whether the automaticResources field is set.
|
public boolean hasCreateTime()
Output only. Timestamp when the DeployedModel was created.
.google.protobuf.Timestamp create_time = 6 [(.google.api.field_behavior) = OUTPUT_ONLY];
Returns
Type | Description |
boolean | Whether the createTime field is set.
|
public boolean hasDedicatedResources()
A description of resources that are dedicated to the DeployedModel, and
that need a higher degree of manual configuration.
.google.cloud.aiplatform.v1.DedicatedResources dedicated_resources = 7;
Returns
Type | Description |
boolean | Whether the dedicatedResources field is set.
|
public boolean hasExplanationSpec()
Explanation configuration for this DeployedModel.
When deploying a Model using
EndpointService.DeployModel,
this value overrides the value of
Model.explanation_spec.
All fields of
explanation_spec
are optional in the request. If a field of
explanation_spec
is not populated, the value of the same field of
Model.explanation_spec
is inherited. If the corresponding
Model.explanation_spec
is not populated, all fields of the
explanation_spec
will be used for the explanation configuration.
.google.cloud.aiplatform.v1.ExplanationSpec explanation_spec = 9;
Returns
Type | Description |
boolean | Whether the explanationSpec field is set.
|
public boolean hasPrivateEndpoints()
Output only. Provide paths for users to send predict/explain/health
requests directly to the deployed model services running on Cloud via
private services access. This field is populated if
network is configured.
.google.cloud.aiplatform.v1.PrivateEndpoints private_endpoints = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];
Returns
Type | Description |
boolean | Whether the privateEndpoints field is set.
|
Returns
Overrides
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Overrides
public final boolean isInitialized()
Returns
Overrides
public DeployedModel.Builder newBuilderForType()
Returns
protected DeployedModel.Builder newBuilderForType(GeneratedMessageV3.BuilderParent parent)
Parameter
Returns
Overrides
protected Object newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
Parameter
Returns
Overrides
public DeployedModel.Builder toBuilder()
Returns
public void writeTo(CodedOutputStream output)
Parameter
Overrides
Exceptions