public final class ActiveLearningConfig extends GeneratedMessageV3 implements ActiveLearningConfigOrBuilder
Parameters that configure the active learning pipeline. Active learning will
label the data incrementally by several iterations. For every iteration, it
will select a batch of data based on the sampling strategy.
Protobuf type google.cloud.aiplatform.v1.ActiveLearningConfig
Static Fields
public static final int MAX_DATA_ITEM_COUNT_FIELD_NUMBER
Field Value
public static final int MAX_DATA_ITEM_PERCENTAGE_FIELD_NUMBER
Field Value
public static final int SAMPLE_CONFIG_FIELD_NUMBER
Field Value
public static final int TRAINING_CONFIG_FIELD_NUMBER
Field Value
Static Methods
public static ActiveLearningConfig getDefaultInstance()
Returns
public static final Descriptors.Descriptor getDescriptor()
Returns
public static ActiveLearningConfig.Builder newBuilder()
Returns
public static ActiveLearningConfig.Builder newBuilder(ActiveLearningConfig prototype)
Parameter
Returns
public static ActiveLearningConfig parseDelimitedFrom(InputStream input)
Parameter
Returns
Exceptions
public static ActiveLearningConfig parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static ActiveLearningConfig parseFrom(byte[] data)
Parameter
Name | Description |
data | byte[]
|
Returns
Exceptions
public static ActiveLearningConfig parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static ActiveLearningConfig parseFrom(ByteString data)
Parameter
Returns
Exceptions
public static ActiveLearningConfig parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static ActiveLearningConfig parseFrom(CodedInputStream input)
Parameter
Returns
Exceptions
public static ActiveLearningConfig parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static ActiveLearningConfig parseFrom(InputStream input)
Parameter
Returns
Exceptions
public static ActiveLearningConfig parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static ActiveLearningConfig parseFrom(ByteBuffer data)
Parameter
Returns
Exceptions
public static ActiveLearningConfig parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static Parser<ActiveLearningConfig> parser()
Returns
Methods
public boolean equals(Object obj)
Parameter
Returns
Overrides
public ActiveLearningConfig getDefaultInstanceForType()
Returns
public ActiveLearningConfig.HumanLabelingBudgetCase getHumanLabelingBudgetCase()
Returns
public long getMaxDataItemCount()
Max number of human labeled DataItems.
int64 max_data_item_count = 1;
Returns
Type | Description |
long | The maxDataItemCount.
|
public int getMaxDataItemPercentage()
Max percent of total DataItems for human labeling.
int32 max_data_item_percentage = 2;
Returns
Type | Description |
int | The maxDataItemPercentage.
|
public Parser<ActiveLearningConfig> getParserForType()
Returns
Overrides
public SampleConfig getSampleConfig()
Active learning data sampling config. For every active learning labeling
iteration, it will select a batch of data based on the sampling strategy.
.google.cloud.aiplatform.v1.SampleConfig sample_config = 3;
Returns
public SampleConfigOrBuilder getSampleConfigOrBuilder()
Active learning data sampling config. For every active learning labeling
iteration, it will select a batch of data based on the sampling strategy.
.google.cloud.aiplatform.v1.SampleConfig sample_config = 3;
Returns
public int getSerializedSize()
Returns
Overrides
public TrainingConfig getTrainingConfig()
CMLE training config. For every active learning labeling iteration, system
will train a machine learning model on CMLE. The trained model will be used
by data sampling algorithm to select DataItems.
.google.cloud.aiplatform.v1.TrainingConfig training_config = 4;
Returns
public TrainingConfigOrBuilder getTrainingConfigOrBuilder()
CMLE training config. For every active learning labeling iteration, system
will train a machine learning model on CMLE. The trained model will be used
by data sampling algorithm to select DataItems.
.google.cloud.aiplatform.v1.TrainingConfig training_config = 4;
Returns
public final UnknownFieldSet getUnknownFields()
Returns
Overrides
public boolean hasMaxDataItemCount()
Max number of human labeled DataItems.
int64 max_data_item_count = 1;
Returns
Type | Description |
boolean | Whether the maxDataItemCount field is set.
|
public boolean hasMaxDataItemPercentage()
Max percent of total DataItems for human labeling.
int32 max_data_item_percentage = 2;
Returns
Type | Description |
boolean | Whether the maxDataItemPercentage field is set.
|
public boolean hasSampleConfig()
Active learning data sampling config. For every active learning labeling
iteration, it will select a batch of data based on the sampling strategy.
.google.cloud.aiplatform.v1.SampleConfig sample_config = 3;
Returns
Type | Description |
boolean | Whether the sampleConfig field is set.
|
public boolean hasTrainingConfig()
CMLE training config. For every active learning labeling iteration, system
will train a machine learning model on CMLE. The trained model will be used
by data sampling algorithm to select DataItems.
.google.cloud.aiplatform.v1.TrainingConfig training_config = 4;
Returns
Type | Description |
boolean | Whether the trainingConfig field is set.
|
Returns
Overrides
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Overrides
public final boolean isInitialized()
Returns
Overrides
public ActiveLearningConfig.Builder newBuilderForType()
Returns
protected ActiveLearningConfig.Builder newBuilderForType(GeneratedMessageV3.BuilderParent parent)
Parameter
Returns
Overrides
protected Object newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
Parameter
Returns
Overrides
public ActiveLearningConfig.Builder toBuilder()
Returns
public void writeTo(CodedOutputStream output)
Parameter
Overrides
Exceptions