public final class XraiAttribution extends GeneratedMessageV3 implements XraiAttributionOrBuilder
An explanation method that redistributes Integrated Gradients
attributions to segmented regions, taking advantage of the model's fully
differentiable structure. Refer to this paper for more details:
https://arxiv.org/abs/1906.02825
Supported only by image Models.
Protobuf type google.cloud.aiplatform.v1.XraiAttribution
Static Fields
public static final int BLUR_BASELINE_CONFIG_FIELD_NUMBER
Field Value
public static final int SMOOTH_GRAD_CONFIG_FIELD_NUMBER
Field Value
public static final int STEP_COUNT_FIELD_NUMBER
Field Value
Static Methods
public static XraiAttribution getDefaultInstance()
Returns
public static final Descriptors.Descriptor getDescriptor()
Returns
public static XraiAttribution.Builder newBuilder()
Returns
public static XraiAttribution.Builder newBuilder(XraiAttribution prototype)
Parameter
Returns
public static XraiAttribution parseDelimitedFrom(InputStream input)
Parameter
Returns
Exceptions
public static XraiAttribution parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static XraiAttribution parseFrom(byte[] data)
Parameter
Name | Description |
data | byte[]
|
Returns
Exceptions
public static XraiAttribution parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static XraiAttribution parseFrom(ByteString data)
Parameter
Returns
Exceptions
public static XraiAttribution parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static XraiAttribution parseFrom(CodedInputStream input)
Parameter
Returns
Exceptions
public static XraiAttribution parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static XraiAttribution parseFrom(InputStream input)
Parameter
Returns
Exceptions
public static XraiAttribution parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static XraiAttribution parseFrom(ByteBuffer data)
Parameter
Returns
Exceptions
public static XraiAttribution parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static Parser<XraiAttribution> parser()
Returns
Methods
public boolean equals(Object obj)
Parameter
Returns
Overrides
public BlurBaselineConfig getBlurBaselineConfig()
Config for XRAI with blur baseline.
When enabled, a linear path from the maximally blurred image to the input
image is created. Using a blurred baseline instead of zero (black image) is
motivated by the BlurIG approach explained here:
https://arxiv.org/abs/2004.03383
.google.cloud.aiplatform.v1.BlurBaselineConfig blur_baseline_config = 3;
Returns
public BlurBaselineConfigOrBuilder getBlurBaselineConfigOrBuilder()
Config for XRAI with blur baseline.
When enabled, a linear path from the maximally blurred image to the input
image is created. Using a blurred baseline instead of zero (black image) is
motivated by the BlurIG approach explained here:
https://arxiv.org/abs/2004.03383
.google.cloud.aiplatform.v1.BlurBaselineConfig blur_baseline_config = 3;
Returns
public XraiAttribution getDefaultInstanceForType()
Returns
public Parser<XraiAttribution> getParserForType()
Returns
Overrides
public int getSerializedSize()
Returns
Overrides
public SmoothGradConfig getSmoothGradConfig()
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients
from noisy samples in the vicinity of the inputs. Adding
noise can help improve the computed gradients. Refer to this paper for more
details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.aiplatform.v1.SmoothGradConfig smooth_grad_config = 2;
Returns
public SmoothGradConfigOrBuilder getSmoothGradConfigOrBuilder()
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients
from noisy samples in the vicinity of the inputs. Adding
noise can help improve the computed gradients. Refer to this paper for more
details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.aiplatform.v1.SmoothGradConfig smooth_grad_config = 2;
Returns
public int getStepCount()
Required. The number of steps for approximating the path integral.
A good value to start is 50 and gradually increase until the
sum to diff property is met within the desired error range.
Valid range of its value is [1, 100], inclusively.
int32 step_count = 1 [(.google.api.field_behavior) = REQUIRED];
Returns
Type | Description |
int | The stepCount.
|
public final UnknownFieldSet getUnknownFields()
Returns
Overrides
public boolean hasBlurBaselineConfig()
Config for XRAI with blur baseline.
When enabled, a linear path from the maximally blurred image to the input
image is created. Using a blurred baseline instead of zero (black image) is
motivated by the BlurIG approach explained here:
https://arxiv.org/abs/2004.03383
.google.cloud.aiplatform.v1.BlurBaselineConfig blur_baseline_config = 3;
Returns
Type | Description |
boolean | Whether the blurBaselineConfig field is set.
|
public boolean hasSmoothGradConfig()
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients
from noisy samples in the vicinity of the inputs. Adding
noise can help improve the computed gradients. Refer to this paper for more
details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.aiplatform.v1.SmoothGradConfig smooth_grad_config = 2;
Returns
Type | Description |
boolean | Whether the smoothGradConfig field is set.
|
Returns
Overrides
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Overrides
public final boolean isInitialized()
Returns
Overrides
public XraiAttribution.Builder newBuilderForType()
Returns
protected XraiAttribution.Builder newBuilderForType(GeneratedMessageV3.BuilderParent parent)
Parameter
Returns
Overrides
protected Object newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
Parameter
Returns
Overrides
public XraiAttribution.Builder toBuilder()
Returns
public void writeTo(CodedOutputStream output)
Parameter
Overrides
Exceptions