public static final class ExplanationMetadata.OutputMetadata.Builder extends GeneratedMessageV3.Builder<ExplanationMetadata.OutputMetadata.Builder> implements ExplanationMetadata.OutputMetadataOrBuilder
Metadata of the prediction output to be explained.
Protobuf type google.cloud.aiplatform.v1beta1.ExplanationMetadata.OutputMetadata
Methods
public ExplanationMetadata.OutputMetadata.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters
Returns
Overrides
public ExplanationMetadata.OutputMetadata build()
Returns
public ExplanationMetadata.OutputMetadata buildPartial()
Returns
public ExplanationMetadata.OutputMetadata.Builder clear()
Returns
Overrides
public ExplanationMetadata.OutputMetadata.Builder clearDisplayNameMapping()
Returns
public ExplanationMetadata.OutputMetadata.Builder clearDisplayNameMappingKey()
Specify a field name in the prediction to look for the display name.
Use this if the prediction contains the display names for the outputs.
The display names in the prediction must have the same shape of the
outputs, so that it can be located by Attribution.output_index for
a specific output.
string display_name_mapping_key = 2;
Returns
public ExplanationMetadata.OutputMetadata.Builder clearField(Descriptors.FieldDescriptor field)
Parameter
Returns
Overrides
public ExplanationMetadata.OutputMetadata.Builder clearIndexDisplayNameMapping()
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a
list of scores of all the classes in a pre-defined order for a
multi-classification Model. It's not feasible if the outputs are
non-deterministic, e.g. the Model produces top-k classes or sort the
outputs by their values.
The shape of the value must be an n-dimensional array of strings. The
number of dimensions must match that of the outputs to be explained.
The Attribution.output_display_name is populated by locating in the
mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Returns
public ExplanationMetadata.OutputMetadata.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter
Returns
Overrides
public ExplanationMetadata.OutputMetadata.Builder clearOutputTensorName()
Name of the output tensor. Required and is only applicable to Vertex
AI provided images for Tensorflow.
string output_tensor_name = 3;
Returns
public ExplanationMetadata.OutputMetadata.Builder clone()
Returns
Overrides
public ExplanationMetadata.OutputMetadata getDefaultInstanceForType()
Returns
public static final Descriptors.Descriptor getDescriptor()
Returns
public Descriptors.Descriptor getDescriptorForType()
Returns
Overrides
public ExplanationMetadata.OutputMetadata.DisplayNameMappingCase getDisplayNameMappingCase()
Returns
public String getDisplayNameMappingKey()
Specify a field name in the prediction to look for the display name.
Use this if the prediction contains the display names for the outputs.
The display names in the prediction must have the same shape of the
outputs, so that it can be located by Attribution.output_index for
a specific output.
string display_name_mapping_key = 2;
Returns
Type | Description |
String | The displayNameMappingKey.
|
public ByteString getDisplayNameMappingKeyBytes()
Specify a field name in the prediction to look for the display name.
Use this if the prediction contains the display names for the outputs.
The display names in the prediction must have the same shape of the
outputs, so that it can be located by Attribution.output_index for
a specific output.
string display_name_mapping_key = 2;
Returns
Type | Description |
ByteString | The bytes for displayNameMappingKey.
|
public Value getIndexDisplayNameMapping()
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a
list of scores of all the classes in a pre-defined order for a
multi-classification Model. It's not feasible if the outputs are
non-deterministic, e.g. the Model produces top-k classes or sort the
outputs by their values.
The shape of the value must be an n-dimensional array of strings. The
number of dimensions must match that of the outputs to be explained.
The Attribution.output_display_name is populated by locating in the
mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Returns
Type | Description |
Value | The indexDisplayNameMapping.
|
public Value.Builder getIndexDisplayNameMappingBuilder()
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a
list of scores of all the classes in a pre-defined order for a
multi-classification Model. It's not feasible if the outputs are
non-deterministic, e.g. the Model produces top-k classes or sort the
outputs by their values.
The shape of the value must be an n-dimensional array of strings. The
number of dimensions must match that of the outputs to be explained.
The Attribution.output_display_name is populated by locating in the
mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Returns
public ValueOrBuilder getIndexDisplayNameMappingOrBuilder()
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a
list of scores of all the classes in a pre-defined order for a
multi-classification Model. It's not feasible if the outputs are
non-deterministic, e.g. the Model produces top-k classes or sort the
outputs by their values.
The shape of the value must be an n-dimensional array of strings. The
number of dimensions must match that of the outputs to be explained.
The Attribution.output_display_name is populated by locating in the
mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Returns
public String getOutputTensorName()
Name of the output tensor. Required and is only applicable to Vertex
AI provided images for Tensorflow.
string output_tensor_name = 3;
Returns
Type | Description |
String | The outputTensorName.
|
public ByteString getOutputTensorNameBytes()
Name of the output tensor. Required and is only applicable to Vertex
AI provided images for Tensorflow.
string output_tensor_name = 3;
Returns
Type | Description |
ByteString | The bytes for outputTensorName.
|
public boolean hasDisplayNameMappingKey()
Specify a field name in the prediction to look for the display name.
Use this if the prediction contains the display names for the outputs.
The display names in the prediction must have the same shape of the
outputs, so that it can be located by Attribution.output_index for
a specific output.
string display_name_mapping_key = 2;
Returns
Type | Description |
boolean | Whether the displayNameMappingKey field is set.
|
public boolean hasIndexDisplayNameMapping()
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a
list of scores of all the classes in a pre-defined order for a
multi-classification Model. It's not feasible if the outputs are
non-deterministic, e.g. the Model produces top-k classes or sort the
outputs by their values.
The shape of the value must be an n-dimensional array of strings. The
number of dimensions must match that of the outputs to be explained.
The Attribution.output_display_name is populated by locating in the
mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Returns
Type | Description |
boolean | Whether the indexDisplayNameMapping field is set.
|
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Overrides
public final boolean isInitialized()
Returns
Overrides
public ExplanationMetadata.OutputMetadata.Builder mergeFrom(ExplanationMetadata.OutputMetadata other)
Parameter
Returns
public ExplanationMetadata.OutputMetadata.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Overrides
Exceptions
public ExplanationMetadata.OutputMetadata.Builder mergeFrom(Message other)
Parameter
Returns
Overrides
public ExplanationMetadata.OutputMetadata.Builder mergeIndexDisplayNameMapping(Value value)
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a
list of scores of all the classes in a pre-defined order for a
multi-classification Model. It's not feasible if the outputs are
non-deterministic, e.g. the Model produces top-k classes or sort the
outputs by their values.
The shape of the value must be an n-dimensional array of strings. The
number of dimensions must match that of the outputs to be explained.
The Attribution.output_display_name is populated by locating in the
mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Parameter
Name | Description |
value | Value
|
Returns
public final ExplanationMetadata.OutputMetadata.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter
Returns
Overrides
public ExplanationMetadata.OutputMetadata.Builder setDisplayNameMappingKey(String value)
Specify a field name in the prediction to look for the display name.
Use this if the prediction contains the display names for the outputs.
The display names in the prediction must have the same shape of the
outputs, so that it can be located by Attribution.output_index for
a specific output.
string display_name_mapping_key = 2;
Parameter
Name | Description |
value | String
The displayNameMappingKey to set.
|
Returns
public ExplanationMetadata.OutputMetadata.Builder setDisplayNameMappingKeyBytes(ByteString value)
Specify a field name in the prediction to look for the display name.
Use this if the prediction contains the display names for the outputs.
The display names in the prediction must have the same shape of the
outputs, so that it can be located by Attribution.output_index for
a specific output.
string display_name_mapping_key = 2;
Parameter
Name | Description |
value | ByteString
The bytes for displayNameMappingKey to set.
|
Returns
public ExplanationMetadata.OutputMetadata.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters
Returns
Overrides
public ExplanationMetadata.OutputMetadata.Builder setIndexDisplayNameMapping(Value value)
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a
list of scores of all the classes in a pre-defined order for a
multi-classification Model. It's not feasible if the outputs are
non-deterministic, e.g. the Model produces top-k classes or sort the
outputs by their values.
The shape of the value must be an n-dimensional array of strings. The
number of dimensions must match that of the outputs to be explained.
The Attribution.output_display_name is populated by locating in the
mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Parameter
Name | Description |
value | Value
|
Returns
public ExplanationMetadata.OutputMetadata.Builder setIndexDisplayNameMapping(Value.Builder builderForValue)
Static mapping between the index and display name.
Use this if the outputs are a deterministic n-dimensional array, e.g. a
list of scores of all the classes in a pre-defined order for a
multi-classification Model. It's not feasible if the outputs are
non-deterministic, e.g. the Model produces top-k classes or sort the
outputs by their values.
The shape of the value must be an n-dimensional array of strings. The
number of dimensions must match that of the outputs to be explained.
The Attribution.output_display_name is populated by locating in the
mapping with Attribution.output_index.
.google.protobuf.Value index_display_name_mapping = 1;
Parameter
Name | Description |
builderForValue | Builder
|
Returns
public ExplanationMetadata.OutputMetadata.Builder setOutputTensorName(String value)
Name of the output tensor. Required and is only applicable to Vertex
AI provided images for Tensorflow.
string output_tensor_name = 3;
Parameter
Name | Description |
value | String
The outputTensorName to set.
|
Returns
public ExplanationMetadata.OutputMetadata.Builder setOutputTensorNameBytes(ByteString value)
Name of the output tensor. Required and is only applicable to Vertex
AI provided images for Tensorflow.
string output_tensor_name = 3;
Parameter
Name | Description |
value | ByteString
The bytes for outputTensorName to set.
|
Returns
public ExplanationMetadata.OutputMetadata.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters
Returns
Overrides
public final ExplanationMetadata.OutputMetadata.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter
Returns
Overrides