ストリーミング出力を使用したグラウンディング生成

ストリーミング出力を使用したグラウンディング生成

もっと見る

このコードサンプルを含む詳細なドキュメントについては、以下をご覧ください。

コードサンプル

Python

詳細については、Vertex AI Agent Builder Python API のリファレンス ドキュメントをご覧ください。

Vertex AI Agent Builder に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。 詳細については、ローカル開発環境の認証の設定をご覧ください。

from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"

client = discoveryengine.GroundedGenerationServiceClient()

request = discoveryengine.GenerateGroundedContentRequest(
    # The full resource name of the location.
    # Format: projects/{project_number}/locations/{location}
    location=client.common_location_path(project=project_number, location="global"),
    generation_spec=discoveryengine.GenerateGroundedContentRequest.GenerationSpec(
        model_id="gemini-1.5-flash",
    ),
    # Conversation between user and model
    contents=[
        discoveryengine.GroundedGenerationContent(
            role="user",
            parts=[
                discoveryengine.GroundedGenerationContent.Part(
                    text="Summarize how to delete a data store in Vertex AI Agent Builder?"
                )
            ],
        )
    ],
    grounding_spec=discoveryengine.GenerateGroundedContentRequest.GroundingSpec(
        grounding_sources=[
            discoveryengine.GenerateGroundedContentRequest.GroundingSource(
                google_search_source=discoveryengine.GenerateGroundedContentRequest.GroundingSource.GoogleSearchSource()
            ),
        ]
    ),
)
responses = client.stream_generate_grounded_content(iter([request]))

for response in responses:
    # Handle the response
    print(response)

次のステップ

他の Google Cloud プロダクトに関連するコードサンプルの検索およびフィルタ検索を行うには、Google Cloud のサンプルをご覧ください。