Search a data store

Perform a search query for a data store.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Java

For more information, see the Vertex AI Agent Builder Java API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


import com.google.cloud.discoveryengine.v1.SearchRequest;
import com.google.cloud.discoveryengine.v1.SearchResponse;
import com.google.cloud.discoveryengine.v1.SearchServiceClient;
import com.google.cloud.discoveryengine.v1.SearchServiceSettings;
import com.google.cloud.discoveryengine.v1.ServingConfigName;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

public class Search {
  public static void main() throws IOException, ExecutionException {
    // TODO(developer): Replace these variables before running the sample.
    // Project ID or project number of the Cloud project you want to use.
    String projectId = "PROJECT_ID";
    // Location of the data store. Options: "global", "us", "eu"
    String location = "global";
    // Collection containing the data store.
    String collectionId = "default_collection";
    // Data store ID.
    String dataStoreId = "DATA_STORE_ID";
    // Serving configuration. Options: "default_search"
    String servingConfigId = "default_search";
    // Search Query for the data store.
    String searchQuery = "Google";
    search(projectId, location, collectionId, dataStoreId, servingConfigId, searchQuery);
  }

  /** Performs a search on a given datastore. */
  public static void search(
      String projectId,
      String location,
      String collectionId,
      String dataStoreId,
      String servingConfigId,
      String searchQuery)
      throws IOException, ExecutionException {
    // For more information, refer to:
    // https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    String endpoint = (location.equals("global")) 
        ? String.format("discoveryengine.googleapis.com:443", location) 
        : String.format("%s-discoveryengine.googleapis.com:443", location);
    SearchServiceSettings settings =
        SearchServiceSettings.newBuilder().setEndpoint(endpoint).build();
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the `searchServiceClient.close()` method on the client to safely
    // clean up any remaining background resources.
    try (SearchServiceClient searchServiceClient = SearchServiceClient.create(settings)) {
      SearchRequest request =
          SearchRequest.newBuilder()
              .setServingConfig(
                  ServingConfigName.formatProjectLocationCollectionDataStoreServingConfigName(
                      projectId, location, collectionId, dataStoreId, servingConfigId))
              .setQuery(searchQuery)
              .setPageSize(10)
              .build();
      SearchResponse response = searchServiceClient.search(request).getPage().getResponse();
      for (SearchResponse.SearchResult element : response.getResultsList()) {
        System.out.println("Response content: " + element);
      }
    }
  }
}

Node.js

For more information, see the Vertex AI Agent Builder Node.js API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'YOUR_LOCATION';              // Options: 'global', 'us', 'eu'
// const collectionId = 'default_collection';     // Options: 'default_collection'
// const dataStoreId = 'YOUR_DATA_STORE_ID'       // Create in Cloud Console
// const servingConfigId = 'default_config';      // Options: 'default_config'
// const searchQuery = 'Google';

const {SearchServiceClient} = require('@google-cloud/discoveryengine').v1beta;

// For more information, refer to:
// https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
const apiEndpoint =
  location === 'global'
    ? 'discoveryengine.googleapis.com'
    : `${location}-discoveryengine.googleapis.com`;

// Instantiates a client
const client = new SearchServiceClient({apiEndpoint: apiEndpoint});

async function search() {
  // The full resource name of the search engine serving configuration.
  // Example: projects/{projectId}/locations/{location}/collections/{collectionId}/dataStores/{dataStoreId}/servingConfigs/{servingConfigId}
  // You must create a search engine in the Cloud Console first.
  const name = client.projectLocationCollectionDataStoreServingConfigPath(
    projectId,
    location,
    collectionId,
    dataStoreId,
    servingConfigId
  );

  const request = {
    pageSize: 10,
    query: searchQuery,
    servingConfig: name,
  };

  const IResponseParams = {
    ISearchResult: 0,
    ISearchRequest: 1,
    ISearchResponse: 2,
  };

  // Perform search request
  const response = await client.search(request, {
    // Warning: Should always disable autoPaginate to avoid iterate through all pages.
    //
    // By default NodeJS SDK returns an iterable where you can iterate through all
    // search results instead of only the limited number of results requested on
    // pageSize, by sending multiple sequential search requests page-by-page while
    // iterating, until it exhausts all the search results. This will be unexpected and
    // may cause high Search API usage and long wait time, especially when the matched
    // document numbers are huge.
    autoPaginate: false,
  });
  const results = response[IResponseParams.ISearchResponse].results;

  for (const result of results) {
    console.log(result);
  }
}

Python

For more information, see the Vertex AI Agent Builder Python API reference documentation.

To authenticate to Vertex AI Agent Builder, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

from typing import List

from google.api_core.client_options import ClientOptions
from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_LOCATION"          # Values: "global", "us", "eu"
# engine_id = "YOUR_APP_ID"
# search_query = "YOUR_SEARCH_QUERY"


def search_sample(
    project_id: str,
    location: str,
    engine_id: str,
    search_query: str,
) -> List[discoveryengine.SearchResponse]:
    #  For more information, refer to:
    # https://cloud.google.com/generative-ai-app-builder/docs/locations#specify_a_multi-region_for_your_data_store
    client_options = (
        ClientOptions(api_endpoint=f"{location}-discoveryengine.googleapis.com")
        if location != "global"
        else None
    )

    # Create a client
    client = discoveryengine.SearchServiceClient(client_options=client_options)

    # The full resource name of the search app serving config
    serving_config = f"projects/{project_id}/locations/{location}/collections/default_collection/engines/{engine_id}/servingConfigs/default_config"

    # Optional - only supported for unstructured data: Configuration options for search.
    # Refer to the `ContentSearchSpec` reference for all supported fields:
    # https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.types.SearchRequest.ContentSearchSpec
    content_search_spec = discoveryengine.SearchRequest.ContentSearchSpec(
        # For information about snippets, refer to:
        # https://cloud.google.com/generative-ai-app-builder/docs/snippets
        snippet_spec=discoveryengine.SearchRequest.ContentSearchSpec.SnippetSpec(
            return_snippet=True
        ),
        # For information about search summaries, refer to:
        # https://cloud.google.com/generative-ai-app-builder/docs/get-search-summaries
        summary_spec=discoveryengine.SearchRequest.ContentSearchSpec.SummarySpec(
            summary_result_count=5,
            include_citations=True,
            ignore_adversarial_query=True,
            ignore_non_summary_seeking_query=True,
            model_prompt_spec=discoveryengine.SearchRequest.ContentSearchSpec.SummarySpec.ModelPromptSpec(
                preamble="YOUR_CUSTOM_PROMPT"
            ),
            model_spec=discoveryengine.SearchRequest.ContentSearchSpec.SummarySpec.ModelSpec(
                version="stable",
            ),
        ),
    )

    # Refer to the `SearchRequest` reference for all supported fields:
    # https://cloud.google.com/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.types.SearchRequest
    request = discoveryengine.SearchRequest(
        serving_config=serving_config,
        query=search_query,
        page_size=10,
        content_search_spec=content_search_spec,
        query_expansion_spec=discoveryengine.SearchRequest.QueryExpansionSpec(
            condition=discoveryengine.SearchRequest.QueryExpansionSpec.Condition.AUTO,
        ),
        spell_correction_spec=discoveryengine.SearchRequest.SpellCorrectionSpec(
            mode=discoveryengine.SearchRequest.SpellCorrectionSpec.Mode.AUTO
        ),
    )

    response = client.search(request)
    print(response)

    return response

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.