public sealed class ModelExportOutputConfig : IMessage<ModelExportOutputConfig>, IEquatable<ModelExportOutputConfig>, IDeepCloneable<ModelExportOutputConfig>, IBufferMessage, IMessage
Reference documentation and code samples for the Google AutoML v1 API class ModelExportOutputConfig.
Output configuration for ModelExport Action.
Implements
IMessageModelExportOutputConfig, IEquatableModelExportOutputConfig, IDeepCloneableModelExportOutputConfig, IBufferMessage, IMessageNamespace
Google.Cloud.AutoML.V1Assembly
Google.Cloud.AutoML.V1.dll
Constructors
ModelExportOutputConfig()
public ModelExportOutputConfig()
ModelExportOutputConfig(ModelExportOutputConfig)
public ModelExportOutputConfig(ModelExportOutputConfig other)
Parameter | |
---|---|
Name | Description |
other | ModelExportOutputConfig |
Properties
DestinationCase
public ModelExportOutputConfig.DestinationOneofCase DestinationCase { get; }
Property Value | |
---|---|
Type | Description |
ModelExportOutputConfigDestinationOneofCase |
GcsDestination
public GcsDestination GcsDestination { get; set; }
Required. The Google Cloud Storage location where the model is to be written to. This location may only be set for the following model formats: "tflite", "edgetpu_tflite", "tf_saved_model", "tf_js", "core_ml".
Under the directory given as the destination a new one with name "model-export-<model-display-name>-<timestamp-of-export-call>", where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format, will be created. Inside the model and any of its supporting files will be written.
Property Value | |
---|---|
Type | Description |
GcsDestination |
ModelFormat
public string ModelFormat { get; set; }
The format in which the model must be exported. The available, and default, formats depend on the problem and model type (if given problem and type combination doesn't have a format listed, it means its models are not exportable):
For Image Classification mobile-low-latency-1, mobile-versatile-1, mobile-high-accuracy-1: "tflite" (default), "edgetpu_tflite", "tf_saved_model", "tf_js", "docker".
For Image Classification mobile-core-ml-low-latency-1, mobile-core-ml-versatile-1, mobile-core-ml-high-accuracy-1: "core_ml" (default).
For Image Object Detection mobile-low-latency-1, mobile-versatile-1, mobile-high-accuracy-1: "tflite", "tf_saved_model", "tf_js". Formats description:
tflite - Used for Android mobile devices.
- edgetpu_tflite - Used for Edge TPU devices.
- tf_saved_model - A tensorflow model in SavedModel format.
- tf_js - A TensorFlow.js model that can be used in the browser and in Node.js using JavaScript.
- docker - Used for Docker containers. Use the params field to customize the container. The container is verified to work correctly on ubuntu 16.04 operating system. See more at containers quickstart
- core_ml - Used for iOS mobile devices.
Property Value | |
---|---|
Type | Description |
string |
Params
public MapField<string, string> Params { get; }
Additional model-type and format specific parameters describing the requirements for the to be exported model files, any string must be up to 25000 characters long.
- For
docker
format:cpu_architecture
- (string) "x86_64" (default).gpu_architecture
- (string) "none" (default), "nvidia".
Property Value | |
---|---|
Type | Description |
MapFieldstringstring |