Class ClassificationEvaluationMetrics.Types.ConfidenceMetricsEntry (2.4.0)

public sealed class ConfidenceMetricsEntry : IMessage<ClassificationEvaluationMetrics.Types.ConfidenceMetricsEntry>, IEquatable<ClassificationEvaluationMetrics.Types.ConfidenceMetricsEntry>, IDeepCloneable<ClassificationEvaluationMetrics.Types.ConfidenceMetricsEntry>, IBufferMessage, IMessage

Metrics for a single confidence threshold.

Inheritance

Object > ClassificationEvaluationMetrics.Types.ConfidenceMetricsEntry

Namespace

Google.Cloud.AutoML.V1

Assembly

Google.Cloud.AutoML.V1.dll

Constructors

ConfidenceMetricsEntry()

public ConfidenceMetricsEntry()

ConfidenceMetricsEntry(ClassificationEvaluationMetrics.Types.ConfidenceMetricsEntry)

public ConfidenceMetricsEntry(ClassificationEvaluationMetrics.Types.ConfidenceMetricsEntry other)
Parameter
NameDescription
otherClassificationEvaluationMetrics.Types.ConfidenceMetricsEntry

Properties

ConfidenceThreshold

public float ConfidenceThreshold { get; set; }

Output only. Metrics are computed with an assumption that the model never returns predictions with score lower than this value.

Property Value
TypeDescription
Single

F1Score

public float F1Score { get; set; }

Output only. The harmonic mean of recall and precision.

Property Value
TypeDescription
Single

F1ScoreAt1

public float F1ScoreAt1 { get; set; }

Output only. The harmonic mean of [recall_at1][google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.precision_at1].

Property Value
TypeDescription
Single

FalseNegativeCount

public long FalseNegativeCount { get; set; }

Output only. The number of ground truth labels that are not matched by a model created label.

Property Value
TypeDescription
Int64

FalsePositiveCount

public long FalsePositiveCount { get; set; }

Output only. The number of model created labels that do not match a ground truth label.

Property Value
TypeDescription
Int64

FalsePositiveRate

public float FalsePositiveRate { get; set; }

Output only. False Positive Rate for the given confidence threshold.

Property Value
TypeDescription
Single

FalsePositiveRateAt1

public float FalsePositiveRateAt1 { get; set; }

Output only. The False Positive Rate when only considering the label that has the highest prediction score and not below the confidence threshold for each example.

Property Value
TypeDescription
Single

PositionThreshold

public int PositionThreshold { get; set; }

Output only. Metrics are computed with an assumption that the model always returns at most this many predictions (ordered by their score, descendingly), but they all still need to meet the confidence_threshold.

Property Value
TypeDescription
Int32

Precision

public float Precision { get; set; }

Output only. Precision for the given confidence threshold.

Property Value
TypeDescription
Single

PrecisionAt1

public float PrecisionAt1 { get; set; }

Output only. The precision when only considering the label that has the highest prediction score and not below the confidence threshold for each example.

Property Value
TypeDescription
Single

Recall

public float Recall { get; set; }

Output only. Recall (True Positive Rate) for the given confidence threshold.

Property Value
TypeDescription
Single

RecallAt1

public float RecallAt1 { get; set; }

Output only. The Recall (True Positive Rate) when only considering the label that has the highest prediction score and not below the confidence threshold for each example.

Property Value
TypeDescription
Single

TrueNegativeCount

public long TrueNegativeCount { get; set; }

Output only. The number of labels that were not created by the model, but if they would, they would not match a ground truth label.

Property Value
TypeDescription
Int64

TruePositiveCount

public long TruePositiveCount { get; set; }

Output only. The number of model created labels that match a ground truth label.

Property Value
TypeDescription
Int64