- 3.11.0 (latest)
- 3.10.0
- 3.9.0
- 3.8.0
- 3.7.0
- 3.6.0
- 3.5.0
- 3.4.0
- 3.3.0
- 3.2.0
- 3.1.0
- 3.0.0
- 2.28.0
- 2.27.0
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 2.1.0
- 2.0.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
public sealed class ExplanationParameters : IMessage<ExplanationParameters>, IEquatable<ExplanationParameters>, IDeepCloneable<ExplanationParameters>, IBufferMessage, IMessage
Parameters to configure explaining for Model's predictions.
Implements
IMessage<ExplanationParameters>, IEquatable<ExplanationParameters>, IDeepCloneable<ExplanationParameters>, IBufferMessage, IMessageNamespace
Google.Cloud.AIPlatform.V1Assembly
Google.Cloud.AIPlatform.V1.dll
Constructors
ExplanationParameters()
public ExplanationParameters()
ExplanationParameters(ExplanationParameters)
public ExplanationParameters(ExplanationParameters other)
Parameter | |
---|---|
Name | Description |
other | ExplanationParameters |
Properties
IntegratedGradientsAttribution
public IntegratedGradientsAttribution IntegratedGradientsAttribution { get; set; }
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
Property Value | |
---|---|
Type | Description |
IntegratedGradientsAttribution |
MethodCase
public ExplanationParameters.MethodOneofCase MethodCase { get; }
Property Value | |
---|---|
Type | Description |
ExplanationParameters.MethodOneofCase |
OutputIndices
public ListValue OutputIndices { get; set; }
If populated, only returns attributions that have [output_index][google.cloud.aiplatform.v1.Attribution.output_index] contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.
If not populated, returns attributions for [top_k][google.cloud.aiplatform.v1.ExplanationParameters.top_k] indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
Property Value | |
---|---|
Type | Description |
ListValue |
SampledShapleyAttribution
public SampledShapleyAttribution SampledShapleyAttribution { get; set; }
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
Property Value | |
---|---|
Type | Description |
SampledShapleyAttribution |
TopK
public int TopK { get; set; }
If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
Property Value | |
---|---|
Type | Description |
Int32 |
XraiAttribution
public XraiAttribution XraiAttribution { get; set; }
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
Property Value | |
---|---|
Type | Description |
XraiAttribution |