- 3.13.0 (latest)
- 3.12.0
- 3.11.0
- 3.10.0
- 3.9.0
- 3.8.0
- 3.7.0
- 3.6.0
- 3.5.0
- 3.4.0
- 3.3.0
- 3.2.0
- 3.1.0
- 3.0.0
- 2.28.0
- 2.27.0
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 2.1.0
- 2.0.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
public sealed class ThresholdConfig : IMessage<ThresholdConfig>, IEquatable<ThresholdConfig>, IDeepCloneable<ThresholdConfig>, IBufferMessage, IMessage
Reference documentation and code samples for the Cloud AI Platform v1 API class ThresholdConfig.
The config for feature monitoring threshold.
Implements
IMessageThresholdConfig, IEquatableThresholdConfig, IDeepCloneableThresholdConfig, IBufferMessage, IMessageNamespace
Google.Cloud.AIPlatform.V1Assembly
Google.Cloud.AIPlatform.V1.dll
Constructors
ThresholdConfig()
public ThresholdConfig()
ThresholdConfig(ThresholdConfig)
public ThresholdConfig(ThresholdConfig other)
Parameter | |
---|---|
Name | Description |
other | ThresholdConfig |
Properties
ThresholdCase
public ThresholdConfig.ThresholdOneofCase ThresholdCase { get; }
Property Value | |
---|---|
Type | Description |
ThresholdConfigThresholdOneofCase |
Value
public double Value { get; set; }
Specify a threshold value that can trigger the alert. If this threshold config is for feature distribution distance:
- For categorical feature, the distribution distance is calculated by L-inifinity norm.
- For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence. Each feature must have a non-zero threshold if they need to be monitored. Otherwise no alert will be triggered for that feature.
Property Value | |
---|---|
Type | Description |
double |