- 3.13.0 (latest)
- 3.12.0
- 3.11.0
- 3.10.0
- 3.9.0
- 3.8.0
- 3.7.0
- 3.6.0
- 3.5.0
- 3.4.0
- 3.3.0
- 3.2.0
- 3.1.0
- 3.0.0
- 2.28.0
- 2.27.0
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 2.1.0
- 2.0.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
Classes
ActiveLearningConfig
Parameters that configure the active learning pipeline. Active learning will label the data incrementally by several iterations. For every iteration, it will select a batch of data based on the sampling strategy.
AddContextArtifactsAndExecutionsRequest
Request message for [MetadataService.AddContextArtifactsAndExecutions][google.cloud.aiplatform.v1.MetadataService.AddContextArtifactsAndExecutions].
AddContextArtifactsAndExecutionsResponse
Response message for [MetadataService.AddContextArtifactsAndExecutions][google.cloud.aiplatform.v1.MetadataService.AddContextArtifactsAndExecutions].
AddContextChildrenRequest
Request message for [MetadataService.AddContextChildren][google.cloud.aiplatform.v1.MetadataService.AddContextChildren].
AddContextChildrenResponse
Response message for [MetadataService.AddContextChildren][google.cloud.aiplatform.v1.MetadataService.AddContextChildren].
AddExecutionEventsRequest
Request message for [MetadataService.AddExecutionEvents][google.cloud.aiplatform.v1.MetadataService.AddExecutionEvents].
AddExecutionEventsResponse
Response message for [MetadataService.AddExecutionEvents][google.cloud.aiplatform.v1.MetadataService.AddExecutionEvents].
AddTrialMeasurementRequest
Request message for [VizierService.AddTrialMeasurement][google.cloud.aiplatform.v1.VizierService.AddTrialMeasurement].
AnnotatedDatasetName
Resource name for the AnnotatedDataset
resource.
Annotation
Used to assign specific AnnotationSpec to a particular area of a DataItem or the whole part of the DataItem.
AnnotationName
Resource name for the Annotation
resource.
AnnotationSpec
Identifies a concept with which DataItems may be annotated with.
AnnotationSpecName
Resource name for the AnnotationSpec
resource.
Artifact
Instance of a general artifact.
Artifact.Types
Container for nested types declared in the Artifact message type.
ArtifactName
Resource name for the Artifact
resource.
Attribution
Attribution that explains a particular prediction output.
AutomaticResources
A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration. Each Model supporting these resources documents its specific guidelines.
AutoMLDatasetName
Resource name for the AutoMLDataset
resource.
AutoMLModelName
Resource name for the AutoMLModel
resource.
AutoscalingMetricSpec
The metric specification that defines the target resource utilization (CPU utilization, accelerator's duty cycle, and so on) for calculating the desired replica count.
AvroSource
The storage details for Avro input content.
BatchCreateFeaturesOperationMetadata
Details of operations that perform batch create Features.
BatchCreateFeaturesRequest
Request message for [FeaturestoreService.BatchCreateFeatures][google.cloud.aiplatform.v1.FeaturestoreService.BatchCreateFeatures].
BatchCreateFeaturesResponse
Response message for [FeaturestoreService.BatchCreateFeatures][google.cloud.aiplatform.v1.FeaturestoreService.BatchCreateFeatures].
BatchCreateTensorboardRunsRequest
Request message for [TensorboardService.BatchCreateTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardRuns].
BatchCreateTensorboardRunsResponse
Response message for [TensorboardService.BatchCreateTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardRuns].
BatchCreateTensorboardTimeSeriesRequest
Request message for [TensorboardService.BatchCreateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardTimeSeries].
BatchCreateTensorboardTimeSeriesResponse
Response message for [TensorboardService.BatchCreateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardTimeSeries].
BatchDedicatedResources
A description of resources that are used for performing batch operations, are dedicated to a Model, and need manual configuration.
BatchImportEvaluatedAnnotationsRequest
Request message for [ModelService.BatchImportEvaluatedAnnotations][google.cloud.aiplatform.v1.ModelService.BatchImportEvaluatedAnnotations]
BatchImportEvaluatedAnnotationsResponse
Response message for [ModelService.BatchImportEvaluatedAnnotations][google.cloud.aiplatform.v1.ModelService.BatchImportEvaluatedAnnotations]
BatchImportModelEvaluationSlicesRequest
Request message for [ModelService.BatchImportModelEvaluationSlices][google.cloud.aiplatform.v1.ModelService.BatchImportModelEvaluationSlices]
BatchImportModelEvaluationSlicesResponse
Response message for [ModelService.BatchImportModelEvaluationSlices][google.cloud.aiplatform.v1.ModelService.BatchImportModelEvaluationSlices]
BatchMigrateResourcesOperationMetadata
Runtime operation information for [MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1.MigrationService.BatchMigrateResources].
BatchMigrateResourcesOperationMetadata.Types
Container for nested types declared in the BatchMigrateResourcesOperationMetadata message type.
BatchMigrateResourcesOperationMetadata.Types.PartialResult
Represents a partial result in batch migration operation for one [MigrateResourceRequest][google.cloud.aiplatform.v1.MigrateResourceRequest].
BatchMigrateResourcesRequest
Request message for [MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1.MigrationService.BatchMigrateResources].
BatchMigrateResourcesResponse
Response message for [MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1.MigrationService.BatchMigrateResources].
BatchPredictionJob
A job that uses a [Model][google.cloud.aiplatform.v1.BatchPredictionJob.model] to produce predictions on multiple [input instances][google.cloud.aiplatform.v1.BatchPredictionJob.input_config]. If predictions for significant portion of the instances fail, the job may finish without attempting predictions for all remaining instances.
BatchPredictionJob.Types
Container for nested types declared in the BatchPredictionJob message type.
BatchPredictionJob.Types.InputConfig
Configures the input to [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. See [Model.supported_input_storage_formats][google.cloud.aiplatform.v1.Model.supported_input_storage_formats] for Model's supported input formats, and how instances should be expressed via any of them.
BatchPredictionJob.Types.InstanceConfig
Configuration defining how to transform batch prediction input instances to the instances that the Model accepts.
BatchPredictionJob.Types.OutputConfig
Configures the output of [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. See [Model.supported_output_storage_formats][google.cloud.aiplatform.v1.Model.supported_output_storage_formats] for supported output formats, and how predictions are expressed via any of them.
BatchPredictionJob.Types.OutputInfo
Further describes this job's output. Supplements [output_config][google.cloud.aiplatform.v1.BatchPredictionJob.output_config].
BatchPredictionJobName
Resource name for the BatchPredictionJob
resource.
BatchReadFeatureValuesOperationMetadata
Details of operations that batch reads Feature values.
BatchReadFeatureValuesRequest
Request message for [FeaturestoreService.BatchReadFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.BatchReadFeatureValues].
BatchReadFeatureValuesRequest.Types
Container for nested types declared in the BatchReadFeatureValuesRequest message type.
BatchReadFeatureValuesRequest.Types.EntityTypeSpec
Selects Features of an EntityType to read values of and specifies read settings.
BatchReadFeatureValuesRequest.Types.PassThroughField
Describe pass-through fields in read_instance source.
BatchReadFeatureValuesResponse
Response message for [FeaturestoreService.BatchReadFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.BatchReadFeatureValues].
BatchReadTensorboardTimeSeriesDataRequest
Request message for [TensorboardService.BatchReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.BatchReadTensorboardTimeSeriesData].
BatchReadTensorboardTimeSeriesDataResponse
Response message for [TensorboardService.BatchReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.BatchReadTensorboardTimeSeriesData].
BigQueryDestination
The BigQuery location for the output content.
BigQuerySource
The BigQuery location for the input content.
BlurBaselineConfig
Config for blur baseline.
When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
BoolArray
A list of boolean values.
CancelBatchPredictionJobRequest
Request message for [JobService.CancelBatchPredictionJob][google.cloud.aiplatform.v1.JobService.CancelBatchPredictionJob].
CancelCustomJobRequest
Request message for [JobService.CancelCustomJob][google.cloud.aiplatform.v1.JobService.CancelCustomJob].
CancelDataLabelingJobRequest
Request message for [JobService.CancelDataLabelingJob][google.cloud.aiplatform.v1.JobService.CancelDataLabelingJob].
CancelHyperparameterTuningJobRequest
Request message for [JobService.CancelHyperparameterTuningJob][google.cloud.aiplatform.v1.JobService.CancelHyperparameterTuningJob].
CancelNasJobRequest
Request message for [JobService.CancelNasJob][google.cloud.aiplatform.v1.JobService.CancelNasJob].
CancelPipelineJobRequest
Request message for [PipelineService.CancelPipelineJob][google.cloud.aiplatform.v1.PipelineService.CancelPipelineJob].
CancelTrainingPipelineRequest
Request message for [PipelineService.CancelTrainingPipeline][google.cloud.aiplatform.v1.PipelineService.CancelTrainingPipeline].
CheckTrialEarlyStoppingStateMetatdata
This message will be placed in the metadata field of a google.longrunning.Operation associated with a CheckTrialEarlyStoppingState request.
CheckTrialEarlyStoppingStateRequest
Request message for [VizierService.CheckTrialEarlyStoppingState][google.cloud.aiplatform.v1.VizierService.CheckTrialEarlyStoppingState].
CheckTrialEarlyStoppingStateResponse
Response message for [VizierService.CheckTrialEarlyStoppingState][google.cloud.aiplatform.v1.VizierService.CheckTrialEarlyStoppingState].
CompleteTrialRequest
Request message for [VizierService.CompleteTrial][google.cloud.aiplatform.v1.VizierService.CompleteTrial].
CompletionStats
Success and error statistics of processing multiple entities (for example, DataItems or structured data rows) in batch.
ContainerRegistryDestination
The Container Registry location for the container image.
ContainerSpec
The spec of a Container.
Context
Instance of a general context.
ContextName
Resource name for the Context
resource.
CopyModelOperationMetadata
Details of [ModelService.CopyModel][google.cloud.aiplatform.v1.ModelService.CopyModel] operation.
CopyModelRequest
Request message for [ModelService.CopyModel][google.cloud.aiplatform.v1.ModelService.CopyModel].
CopyModelResponse
Response message of [ModelService.CopyModel][google.cloud.aiplatform.v1.ModelService.CopyModel] operation.
CreateArtifactRequest
Request message for [MetadataService.CreateArtifact][google.cloud.aiplatform.v1.MetadataService.CreateArtifact].
CreateBatchPredictionJobRequest
Request message for [JobService.CreateBatchPredictionJob][google.cloud.aiplatform.v1.JobService.CreateBatchPredictionJob].
CreateContextRequest
Request message for [MetadataService.CreateContext][google.cloud.aiplatform.v1.MetadataService.CreateContext].
CreateCustomJobRequest
Request message for [JobService.CreateCustomJob][google.cloud.aiplatform.v1.JobService.CreateCustomJob].
CreateDataLabelingJobRequest
Request message for [JobService.CreateDataLabelingJob][google.cloud.aiplatform.v1.JobService.CreateDataLabelingJob].
CreateDatasetOperationMetadata
Runtime operation information for [DatasetService.CreateDataset][google.cloud.aiplatform.v1.DatasetService.CreateDataset].
CreateDatasetRequest
Request message for [DatasetService.CreateDataset][google.cloud.aiplatform.v1.DatasetService.CreateDataset].
CreateEndpointOperationMetadata
Runtime operation information for [EndpointService.CreateEndpoint][google.cloud.aiplatform.v1.EndpointService.CreateEndpoint].
CreateEndpointRequest
Request message for [EndpointService.CreateEndpoint][google.cloud.aiplatform.v1.EndpointService.CreateEndpoint].
CreateEntityTypeOperationMetadata
Details of operations that perform create EntityType.
CreateEntityTypeRequest
Request message for [FeaturestoreService.CreateEntityType][google.cloud.aiplatform.v1.FeaturestoreService.CreateEntityType].
CreateExecutionRequest
Request message for [MetadataService.CreateExecution][google.cloud.aiplatform.v1.MetadataService.CreateExecution].
CreateFeatureOperationMetadata
Details of operations that perform create Feature.
CreateFeatureRequest
Request message for [FeaturestoreService.CreateFeature][google.cloud.aiplatform.v1.FeaturestoreService.CreateFeature].
CreateFeaturestoreOperationMetadata
Details of operations that perform create Featurestore.
CreateFeaturestoreRequest
Request message for [FeaturestoreService.CreateFeaturestore][google.cloud.aiplatform.v1.FeaturestoreService.CreateFeaturestore].
CreateHyperparameterTuningJobRequest
Request message for [JobService.CreateHyperparameterTuningJob][google.cloud.aiplatform.v1.JobService.CreateHyperparameterTuningJob].
CreateIndexEndpointOperationMetadata
Runtime operation information for [IndexEndpointService.CreateIndexEndpoint][google.cloud.aiplatform.v1.IndexEndpointService.CreateIndexEndpoint].
CreateIndexEndpointRequest
Request message for [IndexEndpointService.CreateIndexEndpoint][google.cloud.aiplatform.v1.IndexEndpointService.CreateIndexEndpoint].
CreateIndexOperationMetadata
Runtime operation information for [IndexService.CreateIndex][google.cloud.aiplatform.v1.IndexService.CreateIndex].
CreateIndexRequest
Request message for [IndexService.CreateIndex][google.cloud.aiplatform.v1.IndexService.CreateIndex].
CreateMetadataSchemaRequest
Request message for [MetadataService.CreateMetadataSchema][google.cloud.aiplatform.v1.MetadataService.CreateMetadataSchema].
CreateMetadataStoreOperationMetadata
Details of operations that perform [MetadataService.CreateMetadataStore][google.cloud.aiplatform.v1.MetadataService.CreateMetadataStore].
CreateMetadataStoreRequest
Request message for [MetadataService.CreateMetadataStore][google.cloud.aiplatform.v1.MetadataService.CreateMetadataStore].
CreateModelDeploymentMonitoringJobRequest
Request message for [JobService.CreateModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.CreateModelDeploymentMonitoringJob].
CreateNasJobRequest
Request message for [JobService.CreateNasJob][google.cloud.aiplatform.v1.JobService.CreateNasJob].
CreatePipelineJobRequest
Request message for [PipelineService.CreatePipelineJob][google.cloud.aiplatform.v1.PipelineService.CreatePipelineJob].
CreateSpecialistPoolOperationMetadata
Runtime operation information for [SpecialistPoolService.CreateSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.CreateSpecialistPool].
CreateSpecialistPoolRequest
Request message for [SpecialistPoolService.CreateSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.CreateSpecialistPool].
CreateStudyRequest
Request message for [VizierService.CreateStudy][google.cloud.aiplatform.v1.VizierService.CreateStudy].
CreateTensorboardExperimentRequest
Request message for [TensorboardService.CreateTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboardExperiment].
CreateTensorboardOperationMetadata
Details of operations that perform create Tensorboard.
CreateTensorboardRequest
Request message for [TensorboardService.CreateTensorboard][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboard].
CreateTensorboardRunRequest
Request message for [TensorboardService.CreateTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboardRun].
CreateTensorboardTimeSeriesRequest
Request message for [TensorboardService.CreateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboardTimeSeries].
CreateTrainingPipelineRequest
Request message for [PipelineService.CreateTrainingPipeline][google.cloud.aiplatform.v1.PipelineService.CreateTrainingPipeline].
CreateTrialRequest
Request message for [VizierService.CreateTrial][google.cloud.aiplatform.v1.VizierService.CreateTrial].
CsvDestination
The storage details for CSV output content.
CsvSource
The storage details for CSV input content.
CustomJob
Represents a job that runs custom workloads such as a Docker container or a Python package. A CustomJob can have multiple worker pools and each worker pool can have its own machine and input spec. A CustomJob will be cleaned up once the job enters terminal state (failed or succeeded).
CustomJobName
Resource name for the CustomJob
resource.
CustomJobSpec
Represents the spec of a CustomJob.
DataItem
A piece of data in a Dataset. Could be an image, a video, a document or plain text.
DataItemName
Resource name for the DataItem
resource.
DataItemView
A container for a single DataItem and Annotations on it.
DataLabelingDatasetName
Resource name for the DataLabelingDataset
resource.
DataLabelingJob
DataLabelingJob is used to trigger a human labeling job on unlabeled data from the following Dataset:
DataLabelingJobName
Resource name for the DataLabelingJob
resource.
Dataset
A collection of DataItems and Annotations on them.
DatasetName
Resource name for the Dataset
resource.
DatasetService
The service that handles the CRUD of Vertex AI Dataset and its child resources.
DatasetService.DatasetServiceBase
Base class for server-side implementations of DatasetService
DatasetService.DatasetServiceClient
Client for DatasetService
DatasetServiceClient
DatasetService client wrapper, for convenient use.
DatasetServiceClientBuilder
Builder class for DatasetServiceClient to provide simple configuration of credentials, endpoint etc.
DatasetServiceClientImpl
DatasetService client wrapper implementation, for convenient use.
DatasetServiceSettings
Settings for DatasetServiceClient instances.
DedicatedResources
A description of resources that are dedicated to a DeployedModel, and that need a higher degree of manual configuration.
DeleteArtifactRequest
Request message for [MetadataService.DeleteArtifact][google.cloud.aiplatform.v1.MetadataService.DeleteArtifact].
DeleteBatchPredictionJobRequest
Request message for [JobService.DeleteBatchPredictionJob][google.cloud.aiplatform.v1.JobService.DeleteBatchPredictionJob].
DeleteContextRequest
Request message for [MetadataService.DeleteContext][google.cloud.aiplatform.v1.MetadataService.DeleteContext].
DeleteCustomJobRequest
Request message for [JobService.DeleteCustomJob][google.cloud.aiplatform.v1.JobService.DeleteCustomJob].
DeleteDataLabelingJobRequest
Request message for [JobService.DeleteDataLabelingJob][google.cloud.aiplatform.v1.JobService.DeleteDataLabelingJob].
DeleteDatasetRequest
Request message for [DatasetService.DeleteDataset][google.cloud.aiplatform.v1.DatasetService.DeleteDataset].
DeleteEndpointRequest
Request message for [EndpointService.DeleteEndpoint][google.cloud.aiplatform.v1.EndpointService.DeleteEndpoint].
DeleteEntityTypeRequest
Request message for [FeaturestoreService.DeleteEntityTypes][].
DeleteExecutionRequest
Request message for [MetadataService.DeleteExecution][google.cloud.aiplatform.v1.MetadataService.DeleteExecution].
DeleteFeatureRequest
Request message for [FeaturestoreService.DeleteFeature][google.cloud.aiplatform.v1.FeaturestoreService.DeleteFeature].
DeleteFeaturestoreRequest
Request message for [FeaturestoreService.DeleteFeaturestore][google.cloud.aiplatform.v1.FeaturestoreService.DeleteFeaturestore].
DeleteFeatureValuesOperationMetadata
Details of operations that delete Feature values.
DeleteFeatureValuesRequest
Request message for [FeaturestoreService.DeleteFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.DeleteFeatureValues].
DeleteFeatureValuesRequest.Types
Container for nested types declared in the DeleteFeatureValuesRequest message type.
DeleteFeatureValuesRequest.Types.SelectEntity
Message to select entity. If an entity id is selected, all the feature values corresponding to the entity id will be deleted, including the entityId.
DeleteFeatureValuesRequest.Types.SelectTimeRangeAndFeature
Message to select time range and feature. Values of the selected feature generated within an inclusive time range will be deleted. Using this option permanently deletes the feature values from the specified feature IDs within the specified time range. This might include data from the online storage. If you want to retain any deleted historical data in the online storage, you must re-ingest it.
DeleteFeatureValuesResponse
Response message for [FeaturestoreService.DeleteFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.DeleteFeatureValues].
DeleteFeatureValuesResponse.Types
Container for nested types declared in the DeleteFeatureValuesResponse message type.
DeleteFeatureValuesResponse.Types.SelectEntity
Response message if the request uses the SelectEntity option.
DeleteFeatureValuesResponse.Types.SelectTimeRangeAndFeature
Response message if the request uses the SelectTimeRangeAndFeature option.
DeleteHyperparameterTuningJobRequest
Request message for [JobService.DeleteHyperparameterTuningJob][google.cloud.aiplatform.v1.JobService.DeleteHyperparameterTuningJob].
DeleteIndexEndpointRequest
Request message for [IndexEndpointService.DeleteIndexEndpoint][google.cloud.aiplatform.v1.IndexEndpointService.DeleteIndexEndpoint].
DeleteIndexRequest
Request message for [IndexService.DeleteIndex][google.cloud.aiplatform.v1.IndexService.DeleteIndex].
DeleteMetadataStoreOperationMetadata
Details of operations that perform [MetadataService.DeleteMetadataStore][google.cloud.aiplatform.v1.MetadataService.DeleteMetadataStore].
DeleteMetadataStoreRequest
Request message for [MetadataService.DeleteMetadataStore][google.cloud.aiplatform.v1.MetadataService.DeleteMetadataStore].
DeleteModelDeploymentMonitoringJobRequest
Request message for [JobService.DeleteModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.DeleteModelDeploymentMonitoringJob].
DeleteModelRequest
Request message for [ModelService.DeleteModel][google.cloud.aiplatform.v1.ModelService.DeleteModel].
DeleteModelVersionRequest
Request message for [ModelService.DeleteModelVersion][google.cloud.aiplatform.v1.ModelService.DeleteModelVersion].
DeleteNasJobRequest
Request message for [JobService.DeleteNasJob][google.cloud.aiplatform.v1.JobService.DeleteNasJob].
DeleteOperationMetadata
Details of operations that perform deletes of any entities.
DeletePipelineJobRequest
Request message for [PipelineService.DeletePipelineJob][google.cloud.aiplatform.v1.PipelineService.DeletePipelineJob].
DeleteSpecialistPoolRequest
Request message for [SpecialistPoolService.DeleteSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.DeleteSpecialistPool].
DeleteStudyRequest
Request message for [VizierService.DeleteStudy][google.cloud.aiplatform.v1.VizierService.DeleteStudy].
DeleteTensorboardExperimentRequest
Request message for [TensorboardService.DeleteTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboardExperiment].
DeleteTensorboardRequest
Request message for [TensorboardService.DeleteTensorboard][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboard].
DeleteTensorboardRunRequest
Request message for [TensorboardService.DeleteTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboardRun].
DeleteTensorboardTimeSeriesRequest
Request message for [TensorboardService.DeleteTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboardTimeSeries].
DeleteTrainingPipelineRequest
Request message for [PipelineService.DeleteTrainingPipeline][google.cloud.aiplatform.v1.PipelineService.DeleteTrainingPipeline].
DeleteTrialRequest
Request message for [VizierService.DeleteTrial][google.cloud.aiplatform.v1.VizierService.DeleteTrial].
DeployedIndex
A deployment of an Index. IndexEndpoints contain one or more DeployedIndexes.
DeployedIndexAuthConfig
Used to set up the auth on the DeployedIndex's private endpoint.
DeployedIndexAuthConfig.Types
Container for nested types declared in the DeployedIndexAuthConfig message type.
DeployedIndexAuthConfig.Types.AuthProvider
Configuration for an authentication provider, including support for JSON Web Token (JWT).
DeployedIndexRef
Points to a DeployedIndex.
DeployedModel
A deployment of a Model. Endpoints contain one or more DeployedModels.
DeployedModelRef
Points to a DeployedModel.
DeployIndexOperationMetadata
Runtime operation information for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.DeployIndex].
DeployIndexRequest
Request message for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.DeployIndex].
DeployIndexResponse
Response message for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.DeployIndex].
DeployModelOperationMetadata
Runtime operation information for [EndpointService.DeployModel][google.cloud.aiplatform.v1.EndpointService.DeployModel].
DeployModelRequest
Request message for [EndpointService.DeployModel][google.cloud.aiplatform.v1.EndpointService.DeployModel].
DeployModelResponse
Response message for [EndpointService.DeployModel][google.cloud.aiplatform.v1.EndpointService.DeployModel].
DestinationFeatureSetting
DiskSpec
Represents the spec of disk options.
DoubleArray
A list of double values.
EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top-level resource.
Endpoint
Models are deployed into it, and afterwards Endpoint is called to obtain predictions and explanations.
EndpointName
Resource name for the Endpoint
resource.
EndpointService
A service for managing Vertex AI's Endpoints.
EndpointService.EndpointServiceBase
Base class for server-side implementations of EndpointService
EndpointService.EndpointServiceClient
Client for EndpointService
EndpointServiceClient
EndpointService client wrapper, for convenient use.
EndpointServiceClientBuilder
Builder class for EndpointServiceClient to provide simple configuration of credentials, endpoint etc.
EndpointServiceClientImpl
EndpointService client wrapper implementation, for convenient use.
EndpointServiceSettings
Settings for EndpointServiceClient instances.
EntityIdSelector
Selector for entityId. Getting ids from the given source.
EntityType
An entity type is a type of object in a system that needs to be modeled and have stored information about. For example, driver is an entity type, and driver0 is an instance of an entity type driver.
EntityTypeName
Resource name for the EntityType
resource.
EnvVar
Represents an environment variable present in a Container or Python Module.
ErrorAnalysisAnnotation
Model error analysis for each annotation.
ErrorAnalysisAnnotation.Types
Container for nested types declared in the ErrorAnalysisAnnotation message type.
ErrorAnalysisAnnotation.Types.AttributedItem
Attributed items for a given annotation, typically representing neighbors from the training sets constrained by the query type.
EvaluatedAnnotation
True positive, false positive, or false negative.
EvaluatedAnnotation is only available under ModelEvaluationSlice with slice
of annotationSpec
dimension.
EvaluatedAnnotation.Types
Container for nested types declared in the EvaluatedAnnotation message type.
EvaluatedAnnotationExplanation
Explanation result of the prediction produced by the Model.
Event
An edge describing the relationship between an Artifact and an Execution in a lineage graph.
Event.Types
Container for nested types declared in the Event message type.
ExamplesOverride
Overrides for example-based explanations.
ExamplesOverride.Types
Container for nested types declared in the ExamplesOverride message type.
ExamplesRestrictionsNamespace
Restrictions namespace for example-based explanations overrides.
Execution
Instance of a general execution.
Execution.Types
Container for nested types declared in the Execution message type.
ExecutionName
Resource name for the Execution
resource.
ExplainRequest
Request message for [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].
ExplainResponse
Response message for [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].
Explanation
Explanation of a prediction (provided in [PredictResponse.predictions][google.cloud.aiplatform.v1.PredictResponse.predictions]) produced by the Model on a given [instance][google.cloud.aiplatform.v1.ExplainRequest.instances].
ExplanationMetadata
Metadata describing the Model's input and output for explanation.
ExplanationMetadata.Types
Container for nested types declared in the ExplanationMetadata message type.
ExplanationMetadata.Types.InputMetadata
Metadata of the input of a feature.
Fields other than [InputMetadata.input_baselines][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.input_baselines] are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
ExplanationMetadata.Types.InputMetadata.Types
Container for nested types declared in the InputMetadata message type.
ExplanationMetadata.Types.InputMetadata.Types.FeatureValueDomain
Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre-processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained.
ExplanationMetadata.Types.InputMetadata.Types.Visualization
Visualization configurations for image explanation.
ExplanationMetadata.Types.InputMetadata.Types.Visualization.Types
Container for nested types declared in the Visualization message type.
ExplanationMetadata.Types.OutputMetadata
Metadata of the prediction output to be explained.
ExplanationMetadataOverride
The [ExplanationMetadata][google.cloud.aiplatform.v1.ExplanationMetadata] entries that can be overridden at [online explanation][google.cloud.aiplatform.v1.PredictionService.Explain] time.
ExplanationMetadataOverride.Types
Container for nested types declared in the ExplanationMetadataOverride message type.
ExplanationMetadataOverride.Types.InputMetadataOverride
The [input metadata][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata] entries to be overridden.
ExplanationParameters
Parameters to configure explaining for Model's predictions.
ExplanationSpec
Specification of Model explanation.
ExplanationSpecOverride
The [ExplanationSpec][google.cloud.aiplatform.v1.ExplanationSpec] entries that can be overridden at [online explanation][google.cloud.aiplatform.v1.PredictionService.Explain] time.
ExportDataConfig
Describes what part of the Dataset is to be exported, the destination of the export and how to export.
ExportDataOperationMetadata
Runtime operation information for [DatasetService.ExportData][google.cloud.aiplatform.v1.DatasetService.ExportData].
ExportDataRequest
Request message for [DatasetService.ExportData][google.cloud.aiplatform.v1.DatasetService.ExportData].
ExportDataResponse
Response message for [DatasetService.ExportData][google.cloud.aiplatform.v1.DatasetService.ExportData].
ExportFeatureValuesOperationMetadata
Details of operations that exports Features values.
ExportFeatureValuesRequest
Request message for [FeaturestoreService.ExportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ExportFeatureValues].
ExportFeatureValuesRequest.Types
Container for nested types declared in the ExportFeatureValuesRequest message type.
ExportFeatureValuesRequest.Types.FullExport
Describes exporting all historical Feature values of all entities of the EntityType between [start_time, end_time].
ExportFeatureValuesRequest.Types.SnapshotExport
Describes exporting the latest Feature values of all entities of the EntityType between [start_time, snapshot_time].
ExportFeatureValuesResponse
Response message for [FeaturestoreService.ExportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ExportFeatureValues].
ExportFractionSplit
Assigns the input data to training, validation, and test sets as per the
given fractions. Any of training_fraction
, validation_fraction
and
test_fraction
may optionally be provided, they must sum to up to 1. If the
provided ones sum to less than 1, the remainder is assigned to sets as
decided by Vertex AI. If none of the fractions are set, by default roughly
80% of data is used for training, 10% for validation, and 10% for test.
ExportModelOperationMetadata
Details of [ModelService.ExportModel][google.cloud.aiplatform.v1.ModelService.ExportModel] operation.
ExportModelOperationMetadata.Types
Container for nested types declared in the ExportModelOperationMetadata message type.
ExportModelOperationMetadata.Types.OutputInfo
Further describes the output of the ExportModel. Supplements [ExportModelRequest.OutputConfig][google.cloud.aiplatform.v1.ExportModelRequest.OutputConfig].
ExportModelRequest
Request message for [ModelService.ExportModel][google.cloud.aiplatform.v1.ModelService.ExportModel].
ExportModelRequest.Types
Container for nested types declared in the ExportModelRequest message type.
ExportModelRequest.Types.OutputConfig
Output configuration for the Model export.
ExportModelResponse
Response message of [ModelService.ExportModel][google.cloud.aiplatform.v1.ModelService.ExportModel] operation.
ExportTensorboardTimeSeriesDataRequest
Request message for [TensorboardService.ExportTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ExportTensorboardTimeSeriesData].
ExportTensorboardTimeSeriesDataResponse
Response message for [TensorboardService.ExportTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ExportTensorboardTimeSeriesData].
Feature
Feature Metadata information that describes an attribute of an entity type. For example, apple is an entity type, and color is a feature that describes apple.
Feature.Types
Container for nested types declared in the Feature message type.
Feature.Types.MonitoringStatsAnomaly
A list of historical [Snapshot Analysis][FeaturestoreMonitoringConfig.SnapshotAnalysis] or [Import Feature Analysis] [FeaturestoreMonitoringConfig.ImportFeatureAnalysis] stats requested by user, sorted by [FeatureStatsAnomaly.start_time][google.cloud.aiplatform.v1.FeatureStatsAnomaly.start_time] descending.
Feature.Types.MonitoringStatsAnomaly.Types
Container for nested types declared in the MonitoringStatsAnomaly message type.
FeatureName
Resource name for the Feature
resource.
FeatureNoiseSigma
Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients.
FeatureNoiseSigma.Types
Container for nested types declared in the FeatureNoiseSigma message type.
FeatureNoiseSigma.Types.NoiseSigmaForFeature
Noise sigma for a single feature.
FeatureSelector
Selector for Features of an EntityType.
FeatureStatsAnomaly
Stats and Anomaly generated at specific timestamp for specific Feature. The start_time and end_time are used to define the time range of the dataset that current stats belongs to, e.g. prediction traffic is bucketed into prediction datasets by time window. If the Dataset is not defined by time window, start_time = end_time. Timestamp of the stats and anomalies always refers to end_time. Raw stats and anomalies are stored in stats_uri or anomaly_uri in the tensorflow defined protos. Field data_stats contains almost identical information with the raw stats in Vertex AI defined proto, for UI to display.
Featurestore
Vertex AI Feature Store provides a centralized repository for organizing, storing, and serving ML features. The Featurestore is a top-level container for your features and their values.
Featurestore.Types
Container for nested types declared in the Featurestore message type.
Featurestore.Types.OnlineServingConfig
OnlineServingConfig specifies the details for provisioning online serving resources.
Featurestore.Types.OnlineServingConfig.Types
Container for nested types declared in the OnlineServingConfig message type.
Featurestore.Types.OnlineServingConfig.Types.Scaling
Online serving scaling configuration. If min_node_count and max_node_count are set to the same value, the cluster will be configured with the fixed number of node (no auto-scaling).
FeaturestoreMonitoringConfig
Configuration of how features in Featurestore are monitored.
FeaturestoreMonitoringConfig.Types
Container for nested types declared in the FeaturestoreMonitoringConfig message type.
FeaturestoreMonitoringConfig.Types.ImportFeaturesAnalysis
Configuration of the Featurestore's ImportFeature Analysis Based Monitoring. This type of analysis generates statistics for values of each Feature imported by every [ImportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ImportFeatureValues] operation.
FeaturestoreMonitoringConfig.Types.ImportFeaturesAnalysis.Types
Container for nested types declared in the ImportFeaturesAnalysis message type.
FeaturestoreMonitoringConfig.Types.SnapshotAnalysis
Configuration of the Featurestore's Snapshot Analysis Based Monitoring. This type of analysis generates statistics for each Feature based on a snapshot of the latest feature value of each entities every monitoring_interval.
FeaturestoreMonitoringConfig.Types.ThresholdConfig
The config for Featurestore Monitoring threshold.
FeaturestoreName
Resource name for the Featurestore
resource.
FeaturestoreOnlineServingService
A service for serving online feature values.
FeaturestoreOnlineServingService.FeaturestoreOnlineServingServiceBase
Base class for server-side implementations of FeaturestoreOnlineServingService
FeaturestoreOnlineServingService.FeaturestoreOnlineServingServiceClient
Client for FeaturestoreOnlineServingService
FeaturestoreOnlineServingServiceClient
FeaturestoreOnlineServingService client wrapper, for convenient use.
FeaturestoreOnlineServingServiceClient.StreamingReadFeatureValuesStream
Server streaming methods for StreamingReadFeatureValues(StreamingReadFeatureValuesRequest, CallSettings).
FeaturestoreOnlineServingServiceClientBuilder
Builder class for FeaturestoreOnlineServingServiceClient to provide simple configuration of credentials, endpoint etc.
FeaturestoreOnlineServingServiceClientImpl
FeaturestoreOnlineServingService client wrapper implementation, for convenient use.
FeaturestoreOnlineServingServiceSettings
Settings for FeaturestoreOnlineServingServiceClient instances.
FeaturestoreService
The service that handles CRUD and List for resources for Featurestore.
FeaturestoreService.FeaturestoreServiceBase
Base class for server-side implementations of FeaturestoreService
FeaturestoreService.FeaturestoreServiceClient
Client for FeaturestoreService
FeaturestoreServiceClient
FeaturestoreService client wrapper, for convenient use.
FeaturestoreServiceClientBuilder
Builder class for FeaturestoreServiceClient to provide simple configuration of credentials, endpoint etc.
FeaturestoreServiceClientImpl
FeaturestoreService client wrapper implementation, for convenient use.
FeaturestoreServiceSettings
Settings for FeaturestoreServiceClient instances.
FeatureValue
Value for a feature.
FeatureValue.Types
Container for nested types declared in the FeatureValue message type.
FeatureValue.Types.Metadata
Metadata of feature value.
FeatureValueDestination
A destination location for Feature values and format.
FeatureValueList
Container for list of values.
FilterSplit
Assigns input data to training, validation, and test sets based on the given filters, data pieces not matched by any filter are ignored. Currently only supported for Datasets containing DataItems. If any of the filters in this message are to match nothing, then they can be set as '-' (the minus sign).
Supported only for unstructured Datasets.
FractionSplit
Assigns the input data to training, validation, and test sets as per the
given fractions. Any of training_fraction
, validation_fraction
and
test_fraction
may optionally be provided, they must sum to up to 1. If the
provided ones sum to less than 1, the remainder is assigned to sets as
decided by Vertex AI. If none of the fractions are set, by default roughly
80% of data is used for training, 10% for validation, and 10% for test.
GcsDestination
The Google Cloud Storage location where the output is to be written to.
GcsSource
The Google Cloud Storage location for the input content.
GenericOperationMetadata
Generic Metadata shared by all operations.
GetAnnotationSpecRequest
Request message for [DatasetService.GetAnnotationSpec][google.cloud.aiplatform.v1.DatasetService.GetAnnotationSpec].
GetArtifactRequest
Request message for [MetadataService.GetArtifact][google.cloud.aiplatform.v1.MetadataService.GetArtifact].
GetBatchPredictionJobRequest
Request message for [JobService.GetBatchPredictionJob][google.cloud.aiplatform.v1.JobService.GetBatchPredictionJob].
GetContextRequest
Request message for [MetadataService.GetContext][google.cloud.aiplatform.v1.MetadataService.GetContext].
GetCustomJobRequest
Request message for [JobService.GetCustomJob][google.cloud.aiplatform.v1.JobService.GetCustomJob].
GetDataLabelingJobRequest
Request message for [JobService.GetDataLabelingJob][google.cloud.aiplatform.v1.JobService.GetDataLabelingJob].
GetDatasetRequest
Request message for [DatasetService.GetDataset][google.cloud.aiplatform.v1.DatasetService.GetDataset].
GetEndpointRequest
Request message for [EndpointService.GetEndpoint][google.cloud.aiplatform.v1.EndpointService.GetEndpoint]
GetEntityTypeRequest
Request message for [FeaturestoreService.GetEntityType][google.cloud.aiplatform.v1.FeaturestoreService.GetEntityType].
GetExecutionRequest
Request message for [MetadataService.GetExecution][google.cloud.aiplatform.v1.MetadataService.GetExecution].
GetFeatureRequest
Request message for [FeaturestoreService.GetFeature][google.cloud.aiplatform.v1.FeaturestoreService.GetFeature].
GetFeaturestoreRequest
Request message for [FeaturestoreService.GetFeaturestore][google.cloud.aiplatform.v1.FeaturestoreService.GetFeaturestore].
GetHyperparameterTuningJobRequest
Request message for [JobService.GetHyperparameterTuningJob][google.cloud.aiplatform.v1.JobService.GetHyperparameterTuningJob].
GetIndexEndpointRequest
Request message for [IndexEndpointService.GetIndexEndpoint][google.cloud.aiplatform.v1.IndexEndpointService.GetIndexEndpoint]
GetIndexRequest
Request message for [IndexService.GetIndex][google.cloud.aiplatform.v1.IndexService.GetIndex]
GetMetadataSchemaRequest
Request message for [MetadataService.GetMetadataSchema][google.cloud.aiplatform.v1.MetadataService.GetMetadataSchema].
GetMetadataStoreRequest
Request message for [MetadataService.GetMetadataStore][google.cloud.aiplatform.v1.MetadataService.GetMetadataStore].
GetModelDeploymentMonitoringJobRequest
Request message for [JobService.GetModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.GetModelDeploymentMonitoringJob].
GetModelEvaluationRequest
Request message for [ModelService.GetModelEvaluation][google.cloud.aiplatform.v1.ModelService.GetModelEvaluation].
GetModelEvaluationSliceRequest
Request message for [ModelService.GetModelEvaluationSlice][google.cloud.aiplatform.v1.ModelService.GetModelEvaluationSlice].
GetModelRequest
Request message for [ModelService.GetModel][google.cloud.aiplatform.v1.ModelService.GetModel].
GetNasJobRequest
Request message for [JobService.GetNasJob][google.cloud.aiplatform.v1.JobService.GetNasJob].
GetNasTrialDetailRequest
Request message for [JobService.GetNasTrialDetail][google.cloud.aiplatform.v1.JobService.GetNasTrialDetail].
GetPipelineJobRequest
Request message for [PipelineService.GetPipelineJob][google.cloud.aiplatform.v1.PipelineService.GetPipelineJob].
GetSpecialistPoolRequest
Request message for [SpecialistPoolService.GetSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.GetSpecialistPool].
GetStudyRequest
Request message for [VizierService.GetStudy][google.cloud.aiplatform.v1.VizierService.GetStudy].
GetTensorboardExperimentRequest
Request message for [TensorboardService.GetTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.GetTensorboardExperiment].
GetTensorboardRequest
Request message for [TensorboardService.GetTensorboard][google.cloud.aiplatform.v1.TensorboardService.GetTensorboard].
GetTensorboardRunRequest
Request message for [TensorboardService.GetTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.GetTensorboardRun].
GetTensorboardTimeSeriesRequest
Request message for [TensorboardService.GetTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.GetTensorboardTimeSeries].
GetTrainingPipelineRequest
Request message for [PipelineService.GetTrainingPipeline][google.cloud.aiplatform.v1.PipelineService.GetTrainingPipeline].
GetTrialRequest
Request message for [VizierService.GetTrial][google.cloud.aiplatform.v1.VizierService.GetTrial].
HyperparameterTuningJob
Represents a HyperparameterTuningJob. A HyperparameterTuningJob has a Study specification and multiple CustomJobs with identical CustomJob specification.
HyperparameterTuningJobName
Resource name for the HyperparameterTuningJob
resource.
IdMatcher
Matcher for Features of an EntityType by Feature ID.
ImportDataConfig
Describes the location from where we import data into a Dataset, together with the labels that will be applied to the DataItems and the Annotations.
ImportDataOperationMetadata
Runtime operation information for [DatasetService.ImportData][google.cloud.aiplatform.v1.DatasetService.ImportData].
ImportDataRequest
Request message for [DatasetService.ImportData][google.cloud.aiplatform.v1.DatasetService.ImportData].
ImportDataResponse
Response message for [DatasetService.ImportData][google.cloud.aiplatform.v1.DatasetService.ImportData].
ImportFeatureValuesOperationMetadata
Details of operations that perform import Feature values.
ImportFeatureValuesRequest
Request message for [FeaturestoreService.ImportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ImportFeatureValues].
ImportFeatureValuesRequest.Types
Container for nested types declared in the ImportFeatureValuesRequest message type.
ImportFeatureValuesRequest.Types.FeatureSpec
Defines the Feature value(s) to import.
ImportFeatureValuesResponse
Response message for [FeaturestoreService.ImportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ImportFeatureValues].
ImportModelEvaluationRequest
Request message for [ModelService.ImportModelEvaluation][google.cloud.aiplatform.v1.ModelService.ImportModelEvaluation]
Index
A representation of a collection of database items organized in a way that allows for approximate nearest neighbor (a.k.a ANN) algorithms search.
Index.Types
Container for nested types declared in the Index message type.
IndexDatapoint
A datapoint of Index.
IndexDatapoint.Types
Container for nested types declared in the IndexDatapoint message type.
IndexDatapoint.Types.CrowdingTag
Crowding tag is a constraint on a neighbor list produced by nearest neighbor search requiring that no more than some value k' of the k neighbors returned have the same value of crowding_attribute.
IndexDatapoint.Types.Restriction
Restriction of a datapoint which describe its attributes(tokens) from each of several attribute categories(namespaces).
IndexEndpoint
Indexes are deployed into it. An IndexEndpoint can have multiple DeployedIndexes.
IndexEndpointName
Resource name for the IndexEndpoint
resource.
IndexEndpointService
A service for managing Vertex AI's IndexEndpoints.
IndexEndpointService.IndexEndpointServiceBase
Base class for server-side implementations of IndexEndpointService
IndexEndpointService.IndexEndpointServiceClient
Client for IndexEndpointService
IndexEndpointServiceClient
IndexEndpointService client wrapper, for convenient use.
IndexEndpointServiceClientBuilder
Builder class for IndexEndpointServiceClient to provide simple configuration of credentials, endpoint etc.
IndexEndpointServiceClientImpl
IndexEndpointService client wrapper implementation, for convenient use.
IndexEndpointServiceSettings
Settings for IndexEndpointServiceClient instances.
IndexName
Resource name for the Index
resource.
IndexPrivateEndpoints
IndexPrivateEndpoints proto is used to provide paths for users to send requests via private endpoints (e.g. private service access, private service connect). To send request via private service access, use match_grpc_address. To send request via private service connect, use service_attachment.
IndexService
A service for creating and managing Vertex AI's Index resources.
IndexService.IndexServiceBase
Base class for server-side implementations of IndexService
IndexService.IndexServiceClient
Client for IndexService
IndexServiceClient
IndexService client wrapper, for convenient use.
IndexServiceClientBuilder
Builder class for IndexServiceClient to provide simple configuration of credentials, endpoint etc.
IndexServiceClientImpl
IndexService client wrapper implementation, for convenient use.
IndexServiceSettings
Settings for IndexServiceClient instances.
IndexStats
Stats of the Index.
InputDataConfig
Specifies Vertex AI owned input data to be used for training, and possibly evaluating, the Model.
Int64Array
A list of int64 values.
IntegratedGradientsAttribution
An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
JobService
A service for creating and managing Vertex AI's jobs.
JobService.JobServiceBase
Base class for server-side implementations of JobService
JobService.JobServiceClient
Client for JobService
JobServiceClient
JobService client wrapper, for convenient use.
JobServiceClientBuilder
Builder class for JobServiceClient to provide simple configuration of credentials, endpoint etc.
JobServiceClientImpl
JobService client wrapper implementation, for convenient use.
JobServiceSettings
Settings for JobServiceClient instances.
LineageSubgraph
A subgraph of the overall lineage graph. Event edges connect Artifact and Execution nodes.
ListAnnotationsRequest
Request message for [DatasetService.ListAnnotations][google.cloud.aiplatform.v1.DatasetService.ListAnnotations].
ListAnnotationsResponse
Response message for [DatasetService.ListAnnotations][google.cloud.aiplatform.v1.DatasetService.ListAnnotations].
ListArtifactsRequest
Request message for [MetadataService.ListArtifacts][google.cloud.aiplatform.v1.MetadataService.ListArtifacts].
ListArtifactsResponse
Response message for [MetadataService.ListArtifacts][google.cloud.aiplatform.v1.MetadataService.ListArtifacts].
ListBatchPredictionJobsRequest
Request message for [JobService.ListBatchPredictionJobs][google.cloud.aiplatform.v1.JobService.ListBatchPredictionJobs].
ListBatchPredictionJobsResponse
Response message for [JobService.ListBatchPredictionJobs][google.cloud.aiplatform.v1.JobService.ListBatchPredictionJobs]
ListContextsRequest
Request message for [MetadataService.ListContexts][google.cloud.aiplatform.v1.MetadataService.ListContexts]
ListContextsResponse
Response message for [MetadataService.ListContexts][google.cloud.aiplatform.v1.MetadataService.ListContexts].
ListCustomJobsRequest
Request message for [JobService.ListCustomJobs][google.cloud.aiplatform.v1.JobService.ListCustomJobs].
ListCustomJobsResponse
Response message for [JobService.ListCustomJobs][google.cloud.aiplatform.v1.JobService.ListCustomJobs]
ListDataItemsRequest
Request message for [DatasetService.ListDataItems][google.cloud.aiplatform.v1.DatasetService.ListDataItems].
ListDataItemsResponse
Response message for [DatasetService.ListDataItems][google.cloud.aiplatform.v1.DatasetService.ListDataItems].
ListDataLabelingJobsRequest
Request message for [JobService.ListDataLabelingJobs][google.cloud.aiplatform.v1.JobService.ListDataLabelingJobs].
ListDataLabelingJobsResponse
Response message for [JobService.ListDataLabelingJobs][google.cloud.aiplatform.v1.JobService.ListDataLabelingJobs].
ListDatasetsRequest
Request message for [DatasetService.ListDatasets][google.cloud.aiplatform.v1.DatasetService.ListDatasets].
ListDatasetsResponse
Response message for [DatasetService.ListDatasets][google.cloud.aiplatform.v1.DatasetService.ListDatasets].
ListEndpointsRequest
Request message for [EndpointService.ListEndpoints][google.cloud.aiplatform.v1.EndpointService.ListEndpoints].
ListEndpointsResponse
Response message for [EndpointService.ListEndpoints][google.cloud.aiplatform.v1.EndpointService.ListEndpoints].
ListEntityTypesRequest
Request message for [FeaturestoreService.ListEntityTypes][google.cloud.aiplatform.v1.FeaturestoreService.ListEntityTypes].
ListEntityTypesResponse
Response message for [FeaturestoreService.ListEntityTypes][google.cloud.aiplatform.v1.FeaturestoreService.ListEntityTypes].
ListExecutionsRequest
Request message for [MetadataService.ListExecutions][google.cloud.aiplatform.v1.MetadataService.ListExecutions].
ListExecutionsResponse
Response message for [MetadataService.ListExecutions][google.cloud.aiplatform.v1.MetadataService.ListExecutions].
ListFeaturesRequest
Request message for [FeaturestoreService.ListFeatures][google.cloud.aiplatform.v1.FeaturestoreService.ListFeatures].
ListFeaturesResponse
Response message for [FeaturestoreService.ListFeatures][google.cloud.aiplatform.v1.FeaturestoreService.ListFeatures].
ListFeaturestoresRequest
Request message for [FeaturestoreService.ListFeaturestores][google.cloud.aiplatform.v1.FeaturestoreService.ListFeaturestores].
ListFeaturestoresResponse
Response message for [FeaturestoreService.ListFeaturestores][google.cloud.aiplatform.v1.FeaturestoreService.ListFeaturestores].
ListHyperparameterTuningJobsRequest
Request message for [JobService.ListHyperparameterTuningJobs][google.cloud.aiplatform.v1.JobService.ListHyperparameterTuningJobs].
ListHyperparameterTuningJobsResponse
Response message for [JobService.ListHyperparameterTuningJobs][google.cloud.aiplatform.v1.JobService.ListHyperparameterTuningJobs]
ListIndexEndpointsRequest
Request message for [IndexEndpointService.ListIndexEndpoints][google.cloud.aiplatform.v1.IndexEndpointService.ListIndexEndpoints].
ListIndexEndpointsResponse
Response message for [IndexEndpointService.ListIndexEndpoints][google.cloud.aiplatform.v1.IndexEndpointService.ListIndexEndpoints].
ListIndexesRequest
Request message for [IndexService.ListIndexes][google.cloud.aiplatform.v1.IndexService.ListIndexes].
ListIndexesResponse
Response message for [IndexService.ListIndexes][google.cloud.aiplatform.v1.IndexService.ListIndexes].
ListMetadataSchemasRequest
Request message for [MetadataService.ListMetadataSchemas][google.cloud.aiplatform.v1.MetadataService.ListMetadataSchemas].
ListMetadataSchemasResponse
Response message for [MetadataService.ListMetadataSchemas][google.cloud.aiplatform.v1.MetadataService.ListMetadataSchemas].
ListMetadataStoresRequest
Request message for [MetadataService.ListMetadataStores][google.cloud.aiplatform.v1.MetadataService.ListMetadataStores].
ListMetadataStoresResponse
Response message for [MetadataService.ListMetadataStores][google.cloud.aiplatform.v1.MetadataService.ListMetadataStores].
ListModelDeploymentMonitoringJobsRequest
Request message for [JobService.ListModelDeploymentMonitoringJobs][google.cloud.aiplatform.v1.JobService.ListModelDeploymentMonitoringJobs].
ListModelDeploymentMonitoringJobsResponse
Response message for [JobService.ListModelDeploymentMonitoringJobs][google.cloud.aiplatform.v1.JobService.ListModelDeploymentMonitoringJobs].
ListModelEvaluationSlicesRequest
Request message for [ModelService.ListModelEvaluationSlices][google.cloud.aiplatform.v1.ModelService.ListModelEvaluationSlices].
ListModelEvaluationSlicesResponse
Response message for [ModelService.ListModelEvaluationSlices][google.cloud.aiplatform.v1.ModelService.ListModelEvaluationSlices].
ListModelEvaluationsRequest
Request message for [ModelService.ListModelEvaluations][google.cloud.aiplatform.v1.ModelService.ListModelEvaluations].
ListModelEvaluationsResponse
Response message for [ModelService.ListModelEvaluations][google.cloud.aiplatform.v1.ModelService.ListModelEvaluations].
ListModelsRequest
Request message for [ModelService.ListModels][google.cloud.aiplatform.v1.ModelService.ListModels].
ListModelsResponse
Response message for [ModelService.ListModels][google.cloud.aiplatform.v1.ModelService.ListModels]
ListModelVersionsRequest
Request message for [ModelService.ListModelVersions][google.cloud.aiplatform.v1.ModelService.ListModelVersions].
ListModelVersionsResponse
Response message for [ModelService.ListModelVersions][google.cloud.aiplatform.v1.ModelService.ListModelVersions]
ListNasJobsRequest
Request message for [JobService.ListNasJobs][google.cloud.aiplatform.v1.JobService.ListNasJobs].
ListNasJobsResponse
Response message for [JobService.ListNasJobs][google.cloud.aiplatform.v1.JobService.ListNasJobs]
ListNasTrialDetailsRequest
Request message for [JobService.ListNasTrialDetails][google.cloud.aiplatform.v1.JobService.ListNasTrialDetails].
ListNasTrialDetailsResponse
Response message for [JobService.ListNasTrialDetails][google.cloud.aiplatform.v1.JobService.ListNasTrialDetails]
ListOptimalTrialsRequest
Request message for [VizierService.ListOptimalTrials][google.cloud.aiplatform.v1.VizierService.ListOptimalTrials].
ListOptimalTrialsResponse
Response message for [VizierService.ListOptimalTrials][google.cloud.aiplatform.v1.VizierService.ListOptimalTrials].
ListPipelineJobsRequest
Request message for [PipelineService.ListPipelineJobs][google.cloud.aiplatform.v1.PipelineService.ListPipelineJobs].
ListPipelineJobsResponse
Response message for [PipelineService.ListPipelineJobs][google.cloud.aiplatform.v1.PipelineService.ListPipelineJobs]
ListSavedQueriesRequest
Request message for [DatasetService.ListSavedQueries][google.cloud.aiplatform.v1.DatasetService.ListSavedQueries].
ListSavedQueriesResponse
Response message for [DatasetService.ListSavedQueries][google.cloud.aiplatform.v1.DatasetService.ListSavedQueries].
ListSpecialistPoolsRequest
Request message for [SpecialistPoolService.ListSpecialistPools][google.cloud.aiplatform.v1.SpecialistPoolService.ListSpecialistPools].
ListSpecialistPoolsResponse
Response message for [SpecialistPoolService.ListSpecialistPools][google.cloud.aiplatform.v1.SpecialistPoolService.ListSpecialistPools].
ListStudiesRequest
Request message for [VizierService.ListStudies][google.cloud.aiplatform.v1.VizierService.ListStudies].
ListStudiesResponse
Response message for [VizierService.ListStudies][google.cloud.aiplatform.v1.VizierService.ListStudies].
ListTensorboardExperimentsRequest
Request message for [TensorboardService.ListTensorboardExperiments][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardExperiments].
ListTensorboardExperimentsResponse
Response message for [TensorboardService.ListTensorboardExperiments][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardExperiments].
ListTensorboardRunsRequest
Request message for [TensorboardService.ListTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardRuns].
ListTensorboardRunsResponse
Response message for [TensorboardService.ListTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardRuns].
ListTensorboardsRequest
Request message for [TensorboardService.ListTensorboards][google.cloud.aiplatform.v1.TensorboardService.ListTensorboards].
ListTensorboardsResponse
Response message for [TensorboardService.ListTensorboards][google.cloud.aiplatform.v1.TensorboardService.ListTensorboards].
ListTensorboardTimeSeriesRequest
Request message for [TensorboardService.ListTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardTimeSeries].
ListTensorboardTimeSeriesResponse
Response message for [TensorboardService.ListTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.ListTensorboardTimeSeries].
ListTrainingPipelinesRequest
Request message for [PipelineService.ListTrainingPipelines][google.cloud.aiplatform.v1.PipelineService.ListTrainingPipelines].
ListTrainingPipelinesResponse
Response message for [PipelineService.ListTrainingPipelines][google.cloud.aiplatform.v1.PipelineService.ListTrainingPipelines]
ListTrialsRequest
Request message for [VizierService.ListTrials][google.cloud.aiplatform.v1.VizierService.ListTrials].
ListTrialsResponse
Response message for [VizierService.ListTrials][google.cloud.aiplatform.v1.VizierService.ListTrials].
LookupStudyRequest
Request message for [VizierService.LookupStudy][google.cloud.aiplatform.v1.VizierService.LookupStudy].
MachineSpec
Specification of a single machine.
ManualBatchTuningParameters
Manual batch tuning parameters.
Measurement
A message representing a Measurement of a Trial. A Measurement contains the Metrics got by executing a Trial using suggested hyperparameter values.
Measurement.Types
Container for nested types declared in the Measurement message type.
Measurement.Types.Metric
A message representing a metric in the measurement.
MergeVersionAliasesRequest
Request message for [ModelService.MergeVersionAliases][google.cloud.aiplatform.v1.ModelService.MergeVersionAliases].
MetadataSchema
Instance of a general MetadataSchema.
MetadataSchema.Types
Container for nested types declared in the MetadataSchema message type.
MetadataSchemaName
Resource name for the MetadataSchema
resource.
MetadataService
Service for reading and writing metadata entries.
MetadataService.MetadataServiceBase
Base class for server-side implementations of MetadataService
MetadataService.MetadataServiceClient
Client for MetadataService
MetadataServiceClient
MetadataService client wrapper, for convenient use.
MetadataServiceClientBuilder
Builder class for MetadataServiceClient to provide simple configuration of credentials, endpoint etc.
MetadataServiceClientImpl
MetadataService client wrapper implementation, for convenient use.
MetadataServiceSettings
Settings for MetadataServiceClient instances.
MetadataStore
Instance of a metadata store. Contains a set of metadata that can be queried.
MetadataStore.Types
Container for nested types declared in the MetadataStore message type.
MetadataStore.Types.MetadataStoreState
Represents state information for a MetadataStore.
MetadataStoreName
Resource name for the MetadataStore
resource.
MigratableResource
Represents one resource that exists in automl.googleapis.com, datalabeling.googleapis.com or ml.googleapis.com.
MigratableResource.Types
Container for nested types declared in the MigratableResource message type.
MigratableResource.Types.AutomlDataset
Represents one Dataset in automl.googleapis.com.
MigratableResource.Types.AutomlModel
Represents one Model in automl.googleapis.com.
MigratableResource.Types.DataLabelingDataset
Represents one Dataset in datalabeling.googleapis.com.
MigratableResource.Types.DataLabelingDataset.Types
Container for nested types declared in the DataLabelingDataset message type.
MigratableResource.Types.DataLabelingDataset.Types.DataLabelingAnnotatedDataset
Represents one AnnotatedDataset in datalabeling.googleapis.com.
MigratableResource.Types.MlEngineModelVersion
Represents one model Version in ml.googleapis.com.
MigrateResourceRequest
Config of migrating one resource from automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com to Vertex AI.
MigrateResourceRequest.Types
Container for nested types declared in the MigrateResourceRequest message type.
MigrateResourceRequest.Types.MigrateAutomlDatasetConfig
Config for migrating Dataset in automl.googleapis.com to Vertex AI's Dataset.
MigrateResourceRequest.Types.MigrateAutomlModelConfig
Config for migrating Model in automl.googleapis.com to Vertex AI's Model.
MigrateResourceRequest.Types.MigrateDataLabelingDatasetConfig
Config for migrating Dataset in datalabeling.googleapis.com to Vertex AI's Dataset.
MigrateResourceRequest.Types.MigrateDataLabelingDatasetConfig.Types
Container for nested types declared in the MigrateDataLabelingDatasetConfig message type.
MigrateResourceRequest.Types.MigrateDataLabelingDatasetConfig.Types.MigrateDataLabelingAnnotatedDatasetConfig
Config for migrating AnnotatedDataset in datalabeling.googleapis.com to Vertex AI's SavedQuery.
MigrateResourceRequest.Types.MigrateMlEngineModelVersionConfig
Config for migrating version in ml.googleapis.com to Vertex AI's Model.
MigrateResourceResponse
Describes a successfully migrated resource.
MigrationService
A service that migrates resources from automl.googleapis.com, datalabeling.googleapis.com and ml.googleapis.com to Vertex AI.
MigrationService.MigrationServiceBase
Base class for server-side implementations of MigrationService
MigrationService.MigrationServiceClient
Client for MigrationService
MigrationServiceClient
MigrationService client wrapper, for convenient use.
MigrationServiceClientBuilder
Builder class for MigrationServiceClient to provide simple configuration of credentials, endpoint etc.
MigrationServiceClientImpl
MigrationService client wrapper implementation, for convenient use.
MigrationServiceSettings
Settings for MigrationServiceClient instances.
Model
A trained machine learning Model.
Model.Types
Container for nested types declared in the Model message type.
Model.Types.ExportFormat
Represents export format supported by the Model. All formats export to Google Cloud Storage.
Model.Types.ExportFormat.Types
Container for nested types declared in the ExportFormat message type.
Model.Types.OriginalModelInfo
Contains information about the original Model if this Model is a copy.
ModelContainerSpec
Specification of a container for serving predictions. Some fields in this message correspond to fields in the Kubernetes Container v1 core specification.
ModelDeploymentMonitoringBigQueryTable
ModelDeploymentMonitoringBigQueryTable specifies the BigQuery table name as well as some information of the logs stored in this table.
ModelDeploymentMonitoringBigQueryTable.Types
Container for nested types declared in the ModelDeploymentMonitoringBigQueryTable message type.
ModelDeploymentMonitoringJob
Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.
ModelDeploymentMonitoringJob.Types
Container for nested types declared in the ModelDeploymentMonitoringJob message type.
ModelDeploymentMonitoringJob.Types.LatestMonitoringPipelineMetadata
All metadata of most recent monitoring pipelines.
ModelDeploymentMonitoringJobName
Resource name for the ModelDeploymentMonitoringJob
resource.
ModelDeploymentMonitoringObjectiveConfig
ModelDeploymentMonitoringObjectiveConfig contains the pair of deployed_model_id to ModelMonitoringObjectiveConfig.
ModelDeploymentMonitoringScheduleConfig
The config for scheduling monitoring job.
ModelEvaluation
A collection of metrics calculated by comparing Model's predictions on all of the test data against annotations from the test data.
ModelEvaluation.Types
Container for nested types declared in the ModelEvaluation message type.
ModelEvaluation.Types.ModelEvaluationExplanationSpec
ModelEvaluationName
Resource name for the ModelEvaluation
resource.
ModelEvaluationSlice
A collection of metrics calculated by comparing Model's predictions on a slice of the test data against ground truth annotations.
ModelEvaluationSlice.Types
Container for nested types declared in the ModelEvaluationSlice message type.
ModelEvaluationSlice.Types.Slice
Definition of a slice.
ModelEvaluationSlice.Types.Slice.Types
Container for nested types declared in the Slice message type.
ModelEvaluationSlice.Types.Slice.Types.SliceSpec
Specification for how the data should be sliced.
ModelEvaluationSlice.Types.Slice.Types.SliceSpec.Types
Container for nested types declared in the SliceSpec message type.
ModelEvaluationSlice.Types.Slice.Types.SliceSpec.Types.Range
A range of values for slice(s).
low
is inclusive, high
is exclusive.
ModelEvaluationSlice.Types.Slice.Types.SliceSpec.Types.SliceConfig
Specification message containing the config for this SliceSpec.
When kind
is selected as value
and/or range
, only a single slice
will be computed.
When all_values
is present, a separate slice will be computed for
each possible label/value for the corresponding key in config
.
Examples, with feature zip_code with values 12345, 23334, 88888 and
feature country with values "US", "Canada", "Mexico" in the dataset:
Example 1:
{
"zip_code": { "value": { "float_value": 12345.0 } }
}
A single slice for any data with zip_code 12345 in the dataset.
Example 2:
{
"zip_code": { "range": { "low": 12345, "high": 20000 } }
}
A single slice containing data where the zip_codes between 12345 and 20000 For this example, data with the zip_code of 12345 will be in this slice.
Example 3:
{
"zip_code": { "range": { "low": 10000, "high": 20000 } },
"country": { "value": { "string_value": "US" } }
}
A single slice containing data where the zip_codes between 10000 and 20000 has the country "US". For this example, data with the zip_code of 12345 and country "US" will be in this slice.
Example 4:
{ "country": {"all_values": { "value": true } } }
Three slices are computed, one for each unique country in the dataset.
Example 5:
{
"country": { "all_values": { "value": true } },
"zip_code": { "value": { "float_value": 12345.0 } }
}
Three slices are computed, one for each unique country in the dataset where the zip_code is also 12345. For this example, data with zip_code 12345 and country "US" will be in one slice, zip_code 12345 and country "Canada" in another slice, and zip_code 12345 and country "Mexico" in another slice, totaling 3 slices.
ModelEvaluationSlice.Types.Slice.Types.SliceSpec.Types.Value
Single value that supports strings and floats.
ModelEvaluationSliceName
Resource name for the ModelEvaluationSlice
resource.
ModelExplanation
Aggregated explanation metrics for a Model over a set of instances.
ModelMonitoringAlertConfig
ModelMonitoringAlertConfig.Types
Container for nested types declared in the ModelMonitoringAlertConfig message type.
ModelMonitoringAlertConfig.Types.EmailAlertConfig
The config for email alert.
ModelMonitoringObjectiveConfig
The objective configuration for model monitoring, including the information needed to detect anomalies for one particular model.
ModelMonitoringObjectiveConfig.Types
Container for nested types declared in the ModelMonitoringObjectiveConfig message type.
ModelMonitoringObjectiveConfig.Types.ExplanationConfig
The config for integrating with Vertex Explainable AI. Only applicable if the Model has explanation_spec populated.
ModelMonitoringObjectiveConfig.Types.ExplanationConfig.Types
Container for nested types declared in the ExplanationConfig message type.
ModelMonitoringObjectiveConfig.Types.ExplanationConfig.Types.ExplanationBaseline
Output from [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob] for Model Monitoring baseline dataset, which can be used to generate baseline attribution scores.
ModelMonitoringObjectiveConfig.Types.ExplanationConfig.Types.ExplanationBaseline.Types
Container for nested types declared in the ExplanationBaseline message type.
ModelMonitoringObjectiveConfig.Types.PredictionDriftDetectionConfig
The config for Prediction data drift detection.
ModelMonitoringObjectiveConfig.Types.TrainingDataset
Training Dataset information.
ModelMonitoringObjectiveConfig.Types.TrainingPredictionSkewDetectionConfig
The config for Training & Prediction data skew detection. It specifies the training dataset sources and the skew detection parameters.
ModelMonitoringStatsAnomalies
Statistics and anomalies generated by Model Monitoring.
ModelMonitoringStatsAnomalies.Types
Container for nested types declared in the ModelMonitoringStatsAnomalies message type.
ModelMonitoringStatsAnomalies.Types.FeatureHistoricStatsAnomalies
Historical Stats (and Anomalies) for a specific Feature.
ModelName
Resource name for the Model
resource.
ModelService
A service for managing Vertex AI's machine learning Models.
ModelService.ModelServiceBase
Base class for server-side implementations of ModelService
ModelService.ModelServiceClient
Client for ModelService
ModelServiceClient
ModelService client wrapper, for convenient use.
ModelServiceClientBuilder
Builder class for ModelServiceClient to provide simple configuration of credentials, endpoint etc.
ModelServiceClientImpl
ModelService client wrapper implementation, for convenient use.
ModelServiceSettings
Settings for ModelServiceClient instances.
ModelSourceInfo
Detail description of the source information of the model.
ModelSourceInfo.Types
Container for nested types declared in the ModelSourceInfo message type.
MutateDeployedIndexOperationMetadata
Runtime operation information for [IndexEndpointService.MutateDeployedIndex][google.cloud.aiplatform.v1.IndexEndpointService.MutateDeployedIndex].
MutateDeployedIndexRequest
Request message for [IndexEndpointService.MutateDeployedIndex][google.cloud.aiplatform.v1.IndexEndpointService.MutateDeployedIndex].
MutateDeployedIndexResponse
Response message for [IndexEndpointService.MutateDeployedIndex][google.cloud.aiplatform.v1.IndexEndpointService.MutateDeployedIndex].
NasJob
Represents a Neural Architecture Search (NAS) job.
NasJobName
Resource name for the NasJob
resource.
NasJobOutput
Represents a uCAIP NasJob output.
NasJobOutput.Types
Container for nested types declared in the NasJobOutput message type.
NasJobOutput.Types.MultiTrialJobOutput
The output of a multi-trial Neural Architecture Search (NAS) jobs.
NasJobSpec
Represents the spec of a NasJob.
NasJobSpec.Types
Container for nested types declared in the NasJobSpec message type.
NasJobSpec.Types.MultiTrialAlgorithmSpec
The spec of multi-trial Neural Architecture Search (NAS).
NasJobSpec.Types.MultiTrialAlgorithmSpec.Types
Container for nested types declared in the MultiTrialAlgorithmSpec message type.
NasJobSpec.Types.MultiTrialAlgorithmSpec.Types.MetricSpec
Represents a metric to optimize.
NasJobSpec.Types.MultiTrialAlgorithmSpec.Types.MetricSpec.Types
Container for nested types declared in the MetricSpec message type.
NasJobSpec.Types.MultiTrialAlgorithmSpec.Types.SearchTrialSpec
Represent spec for search trials.
NasJobSpec.Types.MultiTrialAlgorithmSpec.Types.TrainTrialSpec
Represent spec for train trials.
NasTrial
Represents a uCAIP NasJob trial.
NasTrial.Types
Container for nested types declared in the NasTrial message type.
NasTrialDetail
Represents a NasTrial details along with it's parameters. If there is a corresponding train NasTrial, the train NasTrial is also returned.
NasTrialDetailName
Resource name for the NasTrialDetail
resource.
NearestNeighborSearchOperationMetadata
Runtime operation metadata with regard to Matching Engine Index.
NearestNeighborSearchOperationMetadata.Types
Container for nested types declared in the NearestNeighborSearchOperationMetadata message type.
NearestNeighborSearchOperationMetadata.Types.ContentValidationStats
NearestNeighborSearchOperationMetadata.Types.RecordError
NearestNeighborSearchOperationMetadata.Types.RecordError.Types
Container for nested types declared in the RecordError message type.
Neighbor
Neighbors for example-based explanations.
NetworkName
Resource name for the Network
resource.
NfsMount
Represents a mount configuration for Network File System (NFS) to mount.
PauseModelDeploymentMonitoringJobRequest
Request message for [JobService.PauseModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.PauseModelDeploymentMonitoringJob].
PipelineJob
An instance of a machine learning PipelineJob.
PipelineJob.Types
Container for nested types declared in the PipelineJob message type.
PipelineJob.Types.RuntimeConfig
The runtime config of a PipelineJob.
PipelineJob.Types.RuntimeConfig.Types
Container for nested types declared in the RuntimeConfig message type.
PipelineJob.Types.RuntimeConfig.Types.InputArtifact
The type of an input artifact.
PipelineJobDetail
The runtime detail of PipelineJob.
PipelineJobName
Resource name for the PipelineJob
resource.
PipelineService
A service for creating and managing Vertex AI's pipelines. This includes both
TrainingPipeline
resources (used for AutoML and custom training) and
PipelineJob
resources (used for Vertex AI Pipelines).
PipelineService.PipelineServiceBase
Base class for server-side implementations of PipelineService
PipelineService.PipelineServiceClient
Client for PipelineService
PipelineServiceClient
PipelineService client wrapper, for convenient use.
PipelineServiceClientBuilder
Builder class for PipelineServiceClient to provide simple configuration of credentials, endpoint etc.
PipelineServiceClientImpl
PipelineService client wrapper implementation, for convenient use.
PipelineServiceSettings
Settings for PipelineServiceClient instances.
PipelineTaskDetail
The runtime detail of a task execution.
PipelineTaskDetail.Types
Container for nested types declared in the PipelineTaskDetail message type.
PipelineTaskDetail.Types.ArtifactList
A list of artifact metadata.
PipelineTaskDetail.Types.PipelineTaskStatus
A single record of the task status.
PipelineTaskExecutorDetail
The runtime detail of a pipeline executor.
PipelineTaskExecutorDetail.Types
Container for nested types declared in the PipelineTaskExecutorDetail message type.
PipelineTaskExecutorDetail.Types.ContainerDetail
The detail of a container execution. It contains the job names of the lifecycle of a container execution.
PipelineTaskExecutorDetail.Types.CustomJobDetail
The detailed info for a custom job executor.
PipelineTemplateMetadata
Pipeline template metadata if [PipelineJob.template_uri][google.cloud.aiplatform.v1.PipelineJob.template_uri] is from supported template registry. Currently, the only supported registry is Artifact Registry.
Port
Represents a network port in a container.
PredefinedSplit
Assigns input data to training, validation, and test sets based on the value of a provided key.
Supported only for tabular Datasets.
PredictionService
A service for online predictions and explanations.
PredictionService.PredictionServiceBase
Base class for server-side implementations of PredictionService
PredictionService.PredictionServiceClient
Client for PredictionService
PredictionServiceClient
PredictionService client wrapper, for convenient use.
PredictionServiceClientBuilder
Builder class for PredictionServiceClient to provide simple configuration of credentials, endpoint etc.
PredictionServiceClientImpl
PredictionService client wrapper implementation, for convenient use.
PredictionServiceSettings
Settings for PredictionServiceClient instances.
PredictRequest
Request message for [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict].
PredictRequestResponseLoggingConfig
Configuration for logging request-response to a BigQuery table.
PredictResponse
Response message for [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict].
PredictSchemata
Contains the schemata used in Model's predictions and explanations via [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict], [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain] and [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob].
PrivateEndpoints
PrivateEndpoints proto is used to provide paths for users to send requests privately. To send request via private service access, use predict_http_uri, explain_http_uri or health_http_uri. To send request via private service connect, use service_attachment.
PrivateServiceConnectConfig
Represents configuration for private service connect.
PurgeArtifactsMetadata
Details of operations that perform [MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1.MetadataService.PurgeArtifacts].
PurgeArtifactsRequest
Request message for [MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1.MetadataService.PurgeArtifacts].
PurgeArtifactsResponse
Response message for [MetadataService.PurgeArtifacts][google.cloud.aiplatform.v1.MetadataService.PurgeArtifacts].
PurgeContextsMetadata
Details of operations that perform [MetadataService.PurgeContexts][google.cloud.aiplatform.v1.MetadataService.PurgeContexts].
PurgeContextsRequest
Request message for [MetadataService.PurgeContexts][google.cloud.aiplatform.v1.MetadataService.PurgeContexts].
PurgeContextsResponse
Response message for [MetadataService.PurgeContexts][google.cloud.aiplatform.v1.MetadataService.PurgeContexts].
PurgeExecutionsMetadata
Details of operations that perform [MetadataService.PurgeExecutions][google.cloud.aiplatform.v1.MetadataService.PurgeExecutions].
PurgeExecutionsRequest
Request message for [MetadataService.PurgeExecutions][google.cloud.aiplatform.v1.MetadataService.PurgeExecutions].
PurgeExecutionsResponse
Response message for [MetadataService.PurgeExecutions][google.cloud.aiplatform.v1.MetadataService.PurgeExecutions].
PythonPackageSpec
The spec of a Python packaged code.
QueryArtifactLineageSubgraphRequest
Request message for [MetadataService.QueryArtifactLineageSubgraph][google.cloud.aiplatform.v1.MetadataService.QueryArtifactLineageSubgraph].
QueryContextLineageSubgraphRequest
Request message for [MetadataService.QueryContextLineageSubgraph][google.cloud.aiplatform.v1.MetadataService.QueryContextLineageSubgraph].
QueryExecutionInputsAndOutputsRequest
Request message for [MetadataService.QueryExecutionInputsAndOutputs][google.cloud.aiplatform.v1.MetadataService.QueryExecutionInputsAndOutputs].
RawPredictRequest
Request message for [PredictionService.RawPredict][google.cloud.aiplatform.v1.PredictionService.RawPredict].
ReadFeatureValuesRequest
Request message for [FeaturestoreOnlineServingService.ReadFeatureValues][google.cloud.aiplatform.v1.FeaturestoreOnlineServingService.ReadFeatureValues].
ReadFeatureValuesResponse
Response message for [FeaturestoreOnlineServingService.ReadFeatureValues][google.cloud.aiplatform.v1.FeaturestoreOnlineServingService.ReadFeatureValues].
ReadFeatureValuesResponse.Types
Container for nested types declared in the ReadFeatureValuesResponse message type.
ReadFeatureValuesResponse.Types.EntityView
Entity view with Feature values.
ReadFeatureValuesResponse.Types.EntityView.Types
Container for nested types declared in the EntityView message type.
ReadFeatureValuesResponse.Types.EntityView.Types.Data
Container to hold value(s), successive in time, for one Feature from the request.
ReadFeatureValuesResponse.Types.FeatureDescriptor
Metadata for requested Features.
ReadFeatureValuesResponse.Types.Header
Response header with metadata for the requested [ReadFeatureValuesRequest.entity_type][google.cloud.aiplatform.v1.ReadFeatureValuesRequest.entity_type] and Features.
ReadTensorboardBlobDataRequest
Request message for [TensorboardService.ReadTensorboardBlobData][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardBlobData].
ReadTensorboardBlobDataResponse
Response message for [TensorboardService.ReadTensorboardBlobData][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardBlobData].
ReadTensorboardTimeSeriesDataRequest
Request message for [TensorboardService.ReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardTimeSeriesData].
ReadTensorboardTimeSeriesDataResponse
Response message for [TensorboardService.ReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardTimeSeriesData].
ReadTensorboardUsageRequest
Request message for [TensorboardService.GetTensorboardUsage][].
ReadTensorboardUsageResponse
Response message for [TensorboardService.ReadTensorboardUsage][google.cloud.aiplatform.v1.TensorboardService.ReadTensorboardUsage].
ReadTensorboardUsageResponse.Types
Container for nested types declared in the ReadTensorboardUsageResponse message type.
ReadTensorboardUsageResponse.Types.PerMonthUsageData
Per month usage data
ReadTensorboardUsageResponse.Types.PerUserUsageData
Per user usage data.
RemoveContextChildrenRequest
Request message for [MetadataService.DeleteContextChildrenRequest][].
RemoveContextChildrenResponse
Response message for [MetadataService.RemoveContextChildren][google.cloud.aiplatform.v1.MetadataService.RemoveContextChildren].
RemoveDatapointsRequest
Request message for [IndexService.RemoveDatapoints][google.cloud.aiplatform.v1.IndexService.RemoveDatapoints]
RemoveDatapointsResponse
Response message for [IndexService.RemoveDatapoints][google.cloud.aiplatform.v1.IndexService.RemoveDatapoints]
ResourcesConsumed
Statistics information about resource consumption.
ResumeModelDeploymentMonitoringJobRequest
Request message for [JobService.ResumeModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.ResumeModelDeploymentMonitoringJob].
SampleConfig
Active learning data sampling config. For every active learning labeling iteration, it will select a batch of data based on the sampling strategy.
SampleConfig.Types
Container for nested types declared in the SampleConfig message type.
SampledShapleyAttribution
An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features.
SamplingStrategy
Sampling Strategy for logging, can be for both training and prediction dataset.
SamplingStrategy.Types
Container for nested types declared in the SamplingStrategy message type.
SamplingStrategy.Types.RandomSampleConfig
Requests are randomly selected.
SavedQuery
A SavedQuery is a view of the dataset. It references a subset of annotations by problem type and filters.
SavedQueryName
Resource name for the SavedQuery
resource.
Scalar
One point viewable on a scalar metric plot.
Scheduling
All parameters related to queuing and scheduling of custom jobs.
SearchDataItemsRequest
Request message for [DatasetService.SearchDataItems][google.cloud.aiplatform.v1.DatasetService.SearchDataItems].
SearchDataItemsRequest.Types
Container for nested types declared in the SearchDataItemsRequest message type.
SearchDataItemsRequest.Types.OrderByAnnotation
Expression that allows ranking results based on annotation's property.
SearchDataItemsResponse
Response message for [DatasetService.SearchDataItems][google.cloud.aiplatform.v1.DatasetService.SearchDataItems].
SearchFeaturesRequest
Request message for [FeaturestoreService.SearchFeatures][google.cloud.aiplatform.v1.FeaturestoreService.SearchFeatures].
SearchFeaturesResponse
Response message for [FeaturestoreService.SearchFeatures][google.cloud.aiplatform.v1.FeaturestoreService.SearchFeatures].
SearchMigratableResourcesRequest
Request message for [MigrationService.SearchMigratableResources][google.cloud.aiplatform.v1.MigrationService.SearchMigratableResources].
SearchMigratableResourcesResponse
Response message for [MigrationService.SearchMigratableResources][google.cloud.aiplatform.v1.MigrationService.SearchMigratableResources].
SearchModelDeploymentMonitoringStatsAnomaliesRequest
Request message for [JobService.SearchModelDeploymentMonitoringStatsAnomalies][google.cloud.aiplatform.v1.JobService.SearchModelDeploymentMonitoringStatsAnomalies].
SearchModelDeploymentMonitoringStatsAnomaliesRequest.Types
Container for nested types declared in the SearchModelDeploymentMonitoringStatsAnomaliesRequest message type.
SearchModelDeploymentMonitoringStatsAnomaliesRequest.Types.StatsAnomaliesObjective
Stats requested for specific objective.
SearchModelDeploymentMonitoringStatsAnomaliesResponse
Response message for [JobService.SearchModelDeploymentMonitoringStatsAnomalies][google.cloud.aiplatform.v1.JobService.SearchModelDeploymentMonitoringStatsAnomalies].
SmoothGradConfig
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
SpecialistPool
SpecialistPool represents customers' own workforce to work on their data labeling jobs. It includes a group of specialist managers and workers. Managers are responsible for managing the workers in this pool as well as customers' data labeling jobs associated with this pool. Customers create specialist pool as well as start data labeling jobs on Cloud, managers and workers handle the jobs using CrowdCompute console.
SpecialistPoolName
Resource name for the SpecialistPool
resource.
SpecialistPoolService
A service for creating and managing Customer SpecialistPools. When customers start Data Labeling jobs, they can reuse/create Specialist Pools to bring their own Specialists to label the data. Customers can add/remove Managers for the Specialist Pool on Cloud console, then Managers will get email notifications to manage Specialists and tasks on CrowdCompute console.
SpecialistPoolService.SpecialistPoolServiceBase
Base class for server-side implementations of SpecialistPoolService
SpecialistPoolService.SpecialistPoolServiceClient
Client for SpecialistPoolService
SpecialistPoolServiceClient
SpecialistPoolService client wrapper, for convenient use.
SpecialistPoolServiceClientBuilder
Builder class for SpecialistPoolServiceClient to provide simple configuration of credentials, endpoint etc.
SpecialistPoolServiceClientImpl
SpecialistPoolService client wrapper implementation, for convenient use.
SpecialistPoolServiceSettings
Settings for SpecialistPoolServiceClient instances.
StopTrialRequest
Request message for [VizierService.StopTrial][google.cloud.aiplatform.v1.VizierService.StopTrial].
StratifiedSplit
Assigns input data to the training, validation, and test sets so that the
distribution of values found in the categorical column (as specified by the
key
field) is mirrored within each split. The fraction values determine
the relative sizes of the splits.
For example, if the specified column has three values, with 50% of the rows having value "A", 25% value "B", and 25% value "C", and the split fractions are specified as 80/10/10, then the training set will constitute 80% of the training data, with about 50% of the training set rows having the value "A" for the specified column, about 25% having the value "B", and about 25% having the value "C".
Only the top 500 occurring values are used; any values not in the top 500 values are randomly assigned to a split. If less than three rows contain a specific value, those rows are randomly assigned.
Supported only for tabular Datasets.
StreamingReadFeatureValuesRequest
Request message for [FeaturestoreOnlineServingService.StreamingFeatureValuesRead][].
StringArray
A list of string values.
Study
A message representing a Study.
Study.Types
Container for nested types declared in the Study message type.
StudyName
Resource name for the Study
resource.
StudySpec
Represents specification of a Study.
StudySpec.Types
Container for nested types declared in the StudySpec message type.
StudySpec.Types.ConvexAutomatedStoppingSpec
Configuration for ConvexAutomatedStoppingSpec. When there are enough completed trials (configured by min_measurement_count), for pending trials with enough measurements and steps, the policy first computes an overestimate of the objective value at max_num_steps according to the slope of the incomplete objective value curve. No prediction can be made if the curve is completely flat. If the overestimation is worse than the best objective value of the completed trials, this pending trial will be early-stopped, but a last measurement will be added to the pending trial with max_num_steps and predicted objective value from the autoregression model.
StudySpec.Types.DecayCurveAutomatedStoppingSpec
The decay curve automated stopping rule builds a Gaussian Process Regressor to predict the final objective value of a Trial based on the already completed Trials and the intermediate measurements of the current Trial. Early stopping is requested for the current Trial if there is very low probability to exceed the optimal value found so far.
StudySpec.Types.MedianAutomatedStoppingSpec
The median automated stopping rule stops a pending Trial if the Trial's best objective_value is strictly below the median 'performance' of all completed Trials reported up to the Trial's last measurement. Currently, 'performance' refers to the running average of the objective values reported by the Trial in each measurement.
StudySpec.Types.MetricSpec
Represents a metric to optimize.
StudySpec.Types.MetricSpec.Types
Container for nested types declared in the MetricSpec message type.
StudySpec.Types.MetricSpec.Types.SafetyMetricConfig
Used in safe optimization to specify threshold levels and risk tolerance.
StudySpec.Types.ParameterSpec
Represents a single parameter to optimize.
StudySpec.Types.ParameterSpec.Types
Container for nested types declared in the ParameterSpec message type.
StudySpec.Types.ParameterSpec.Types.CategoricalValueSpec
Value specification for a parameter in CATEGORICAL
type.
StudySpec.Types.ParameterSpec.Types.ConditionalParameterSpec
Represents a parameter spec with condition from its parent parameter.
StudySpec.Types.ParameterSpec.Types.ConditionalParameterSpec.Types
Container for nested types declared in the ConditionalParameterSpec message type.
StudySpec.Types.ParameterSpec.Types.ConditionalParameterSpec.Types.CategoricalValueCondition
Represents the spec to match categorical values from parent parameter.
StudySpec.Types.ParameterSpec.Types.ConditionalParameterSpec.Types.DiscreteValueCondition
Represents the spec to match discrete values from parent parameter.
StudySpec.Types.ParameterSpec.Types.ConditionalParameterSpec.Types.IntValueCondition
Represents the spec to match integer values from parent parameter.
StudySpec.Types.ParameterSpec.Types.DiscreteValueSpec
Value specification for a parameter in DISCRETE
type.
StudySpec.Types.ParameterSpec.Types.DoubleValueSpec
Value specification for a parameter in DOUBLE
type.
StudySpec.Types.ParameterSpec.Types.IntegerValueSpec
Value specification for a parameter in INTEGER
type.
SuggestTrialsMetadata
Details of operations that perform Trials suggestion.
SuggestTrialsRequest
Request message for [VizierService.SuggestTrials][google.cloud.aiplatform.v1.VizierService.SuggestTrials].
SuggestTrialsResponse
Response message for [VizierService.SuggestTrials][google.cloud.aiplatform.v1.VizierService.SuggestTrials].
Tensorboard
Tensorboard is a physical database that stores users' training metrics. A default Tensorboard is provided in each region of a Google Cloud project. If needed users can also create extra Tensorboards in their projects.
TensorboardBlob
One blob (e.g, image, graph) viewable on a blob metric plot.
TensorboardBlobSequence
One point viewable on a blob metric plot, but mostly just a wrapper message
to work around repeated fields can't be used directly within oneof
fields.
TensorboardExperiment
A TensorboardExperiment is a group of TensorboardRuns, that are typically the results of a training job run, in a Tensorboard.
TensorboardExperimentName
Resource name for the TensorboardExperiment
resource.
TensorboardName
Resource name for the Tensorboard
resource.
TensorboardRun
TensorboardRun maps to a specific execution of a training job with a given set of hyperparameter values, model definition, dataset, etc
TensorboardRunName
Resource name for the TensorboardRun
resource.
TensorboardService
TensorboardService
TensorboardService.TensorboardServiceBase
Base class for server-side implementations of TensorboardService
TensorboardService.TensorboardServiceClient
Client for TensorboardService
TensorboardServiceClient
TensorboardService client wrapper, for convenient use.
TensorboardServiceClient.ReadTensorboardBlobDataStream
Server streaming methods for ReadTensorboardBlobData(ReadTensorboardBlobDataRequest, CallSettings).
TensorboardServiceClientBuilder
Builder class for TensorboardServiceClient to provide simple configuration of credentials, endpoint etc.
TensorboardServiceClientImpl
TensorboardService client wrapper implementation, for convenient use.
TensorboardServiceSettings
Settings for TensorboardServiceClient instances.
TensorboardTensor
One point viewable on a tensor metric plot.
TensorboardTimeSeries
TensorboardTimeSeries maps to times series produced in training runs
TensorboardTimeSeries.Types
Container for nested types declared in the TensorboardTimeSeries message type.
TensorboardTimeSeries.Types.Metadata
Describes metadata for a TensorboardTimeSeries.
TensorboardTimeSeriesName
Resource name for the TensorboardTimeSeries
resource.
TFRecordDestination
The storage details for TFRecord output content.
ThresholdConfig
The config for feature monitoring threshold.
TimeSeriesData
All the data stored in a TensorboardTimeSeries.
TimeSeriesDataPoint
A TensorboardTimeSeries data point.
TimestampSplit
Assigns input data to training, validation, and test sets based on a provided timestamps. The youngest data pieces are assigned to training set, next to validation set, and the oldest to the test set.
Supported only for tabular Datasets.
TrainingConfig
CMLE training config. For every active learning labeling iteration, system will train a machine learning model on CMLE. The trained model will be used by data sampling algorithm to select DataItems.
TrainingPipeline
The TrainingPipeline orchestrates tasks associated with training a Model. It always executes the training task, and optionally may also export data from Vertex AI's Dataset which becomes the training input, [upload][google.cloud.aiplatform.v1.ModelService.UploadModel] the Model to Vertex AI, and evaluate the Model.
TrainingPipelineName
Resource name for the TrainingPipeline
resource.
Trial
A message representing a Trial. A Trial contains a unique set of Parameters that has been or will be evaluated, along with the objective metrics got by running the Trial.
Trial.Types
Container for nested types declared in the Trial message type.
Trial.Types.Parameter
A message representing a parameter to be tuned.
TrialName
Resource name for the Trial
resource.
UndeployIndexOperationMetadata
Runtime operation information for [IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.UndeployIndex].
UndeployIndexRequest
Request message for [IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.UndeployIndex].
UndeployIndexResponse
Response message for [IndexEndpointService.UndeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.UndeployIndex].
UndeployModelOperationMetadata
Runtime operation information for [EndpointService.UndeployModel][google.cloud.aiplatform.v1.EndpointService.UndeployModel].
UndeployModelRequest
Request message for [EndpointService.UndeployModel][google.cloud.aiplatform.v1.EndpointService.UndeployModel].
UndeployModelResponse
Response message for [EndpointService.UndeployModel][google.cloud.aiplatform.v1.EndpointService.UndeployModel].
UnmanagedContainerModel
Contains model information necessary to perform batch prediction without requiring a full model import.
UpdateArtifactRequest
Request message for [MetadataService.UpdateArtifact][google.cloud.aiplatform.v1.MetadataService.UpdateArtifact].
UpdateContextRequest
Request message for [MetadataService.UpdateContext][google.cloud.aiplatform.v1.MetadataService.UpdateContext].
UpdateDatasetRequest
Request message for [DatasetService.UpdateDataset][google.cloud.aiplatform.v1.DatasetService.UpdateDataset].
UpdateEndpointRequest
Request message for [EndpointService.UpdateEndpoint][google.cloud.aiplatform.v1.EndpointService.UpdateEndpoint].
UpdateEntityTypeRequest
Request message for [FeaturestoreService.UpdateEntityType][google.cloud.aiplatform.v1.FeaturestoreService.UpdateEntityType].
UpdateExecutionRequest
Request message for [MetadataService.UpdateExecution][google.cloud.aiplatform.v1.MetadataService.UpdateExecution].
UpdateFeatureRequest
Request message for [FeaturestoreService.UpdateFeature][google.cloud.aiplatform.v1.FeaturestoreService.UpdateFeature].
UpdateFeaturestoreOperationMetadata
Details of operations that perform update Featurestore.
UpdateFeaturestoreRequest
Request message for [FeaturestoreService.UpdateFeaturestore][google.cloud.aiplatform.v1.FeaturestoreService.UpdateFeaturestore].
UpdateIndexEndpointRequest
Request message for [IndexEndpointService.UpdateIndexEndpoint][google.cloud.aiplatform.v1.IndexEndpointService.UpdateIndexEndpoint].
UpdateIndexOperationMetadata
Runtime operation information for [IndexService.UpdateIndex][google.cloud.aiplatform.v1.IndexService.UpdateIndex].
UpdateIndexRequest
Request message for [IndexService.UpdateIndex][google.cloud.aiplatform.v1.IndexService.UpdateIndex].
UpdateModelDeploymentMonitoringJobOperationMetadata
Runtime operation information for [JobService.UpdateModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.UpdateModelDeploymentMonitoringJob].
UpdateModelDeploymentMonitoringJobRequest
Request message for [JobService.UpdateModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.UpdateModelDeploymentMonitoringJob].
UpdateModelRequest
Request message for [ModelService.UpdateModel][google.cloud.aiplatform.v1.ModelService.UpdateModel].
UpdateSpecialistPoolOperationMetadata
Runtime operation metadata for [SpecialistPoolService.UpdateSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.UpdateSpecialistPool].
UpdateSpecialistPoolRequest
Request message for [SpecialistPoolService.UpdateSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.UpdateSpecialistPool].
UpdateTensorboardExperimentRequest
Request message for [TensorboardService.UpdateTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.UpdateTensorboardExperiment].
UpdateTensorboardOperationMetadata
Details of operations that perform update Tensorboard.
UpdateTensorboardRequest
Request message for [TensorboardService.UpdateTensorboard][google.cloud.aiplatform.v1.TensorboardService.UpdateTensorboard].
UpdateTensorboardRunRequest
Request message for [TensorboardService.UpdateTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.UpdateTensorboardRun].
UpdateTensorboardTimeSeriesRequest
Request message for [TensorboardService.UpdateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.UpdateTensorboardTimeSeries].
UploadModelOperationMetadata
Details of [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel] operation.
UploadModelRequest
Request message for [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel].
UploadModelResponse
Response message of [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel] operation.
UpsertDatapointsRequest
Request message for [IndexService.UpsertDatapoints][google.cloud.aiplatform.v1.IndexService.UpsertDatapoints]
UpsertDatapointsResponse
Response message for [IndexService.UpsertDatapoints][google.cloud.aiplatform.v1.IndexService.UpsertDatapoints]
UserActionReference
References an API call. It contains more information about long running operation and Jobs that are triggered by the API call.
Value
Value is the value of the field.
ValueConverter
VersionName
Resource name for the Version
resource.
VizierService
Vertex AI Vizier API.
Vertex AI Vizier is a service to solve blackbox optimization problems, such as tuning machine learning hyperparameters and searching over deep learning architectures.
VizierService.VizierServiceBase
Base class for server-side implementations of VizierService
VizierService.VizierServiceClient
Client for VizierService
VizierServiceClient
VizierService client wrapper, for convenient use.
VizierServiceClientBuilder
Builder class for VizierServiceClient to provide simple configuration of credentials, endpoint etc.
VizierServiceClientImpl
VizierService client wrapper implementation, for convenient use.
VizierServiceSettings
Settings for VizierServiceClient instances.
WorkerPoolSpec
Represents the spec of a worker pool in a job.
WriteFeatureValuesPayload
Contains Feature values to be written for a specific entity.
WriteFeatureValuesRequest
Request message for [FeaturestoreOnlineServingService.WriteFeatureValues][google.cloud.aiplatform.v1.FeaturestoreOnlineServingService.WriteFeatureValues].
WriteFeatureValuesResponse
Response message for [FeaturestoreOnlineServingService.WriteFeatureValues][google.cloud.aiplatform.v1.FeaturestoreOnlineServingService.WriteFeatureValues].
WriteTensorboardExperimentDataRequest
Request message for [TensorboardService.WriteTensorboardExperimentData][google.cloud.aiplatform.v1.TensorboardService.WriteTensorboardExperimentData].
WriteTensorboardExperimentDataResponse
Response message for [TensorboardService.WriteTensorboardExperimentData][google.cloud.aiplatform.v1.TensorboardService.WriteTensorboardExperimentData].
WriteTensorboardRunDataRequest
Request message for [TensorboardService.WriteTensorboardRunData][google.cloud.aiplatform.v1.TensorboardService.WriteTensorboardRunData].
WriteTensorboardRunDataResponse
Response message for [TensorboardService.WriteTensorboardRunData][google.cloud.aiplatform.v1.TensorboardService.WriteTensorboardRunData].
XraiAttribution
An explanation method that redistributes Integrated Gradients attributions to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
Supported only by image Models.
Enums
AcceleratorType
Represents a hardware accelerator type.
ActiveLearningConfig.HumanLabelingBudgetOneofCase
Enum of possible cases for the "human_labeling_budget" oneof.
AnnotatedDatasetName.ResourceNameType
The possible contents of AnnotatedDatasetName.
AnnotationName.ResourceNameType
The possible contents of AnnotationName.
AnnotationSpecName.ResourceNameType
The possible contents of AnnotationSpecName.
Artifact.Types.State
Describes the state of the Artifact.
ArtifactName.ResourceNameType
The possible contents of ArtifactName.
AutoMLDatasetName.ResourceNameType
The possible contents of AutoMLDatasetName.
AutoMLModelName.ResourceNameType
The possible contents of AutoMLModelName.
BatchMigrateResourcesOperationMetadata.Types.PartialResult.ResultOneofCase
Enum of possible cases for the "result" oneof.
BatchPredictionJob.Types.InputConfig.SourceOneofCase
Enum of possible cases for the "source" oneof.
BatchPredictionJob.Types.OutputConfig.DestinationOneofCase
Enum of possible cases for the "destination" oneof.
BatchPredictionJob.Types.OutputInfo.OutputLocationOneofCase
Enum of possible cases for the "output_location" oneof.
BatchPredictionJobName.ResourceNameType
The possible contents of BatchPredictionJobName.
BatchReadFeatureValuesRequest.ReadOptionOneofCase
Enum of possible cases for the "read_option" oneof.
ContextName.ResourceNameType
The possible contents of ContextName.
CopyModelRequest.DestinationModelOneofCase
Enum of possible cases for the "destination_model" oneof.
CustomJobName.ResourceNameType
The possible contents of CustomJobName.
DataItemName.ResourceNameType
The possible contents of DataItemName.
DataLabelingDatasetName.ResourceNameType
The possible contents of DataLabelingDatasetName.
DataLabelingJobName.ResourceNameType
The possible contents of DataLabelingJobName.
DatasetName.ResourceNameType
The possible contents of DatasetName.
DeleteFeatureValuesRequest.DeleteOptionOneofCase
Enum of possible cases for the "DeleteOption" oneof.
DeleteFeatureValuesResponse.ResponseOneofCase
Enum of possible cases for the "response" oneof.
DeployedModel.PredictionResourcesOneofCase
Enum of possible cases for the "prediction_resources" oneof.
EndpointName.ResourceNameType
The possible contents of EndpointName.
EntityIdSelector.EntityIdsSourceOneofCase
Enum of possible cases for the "EntityIdsSource" oneof.
EntityTypeName.ResourceNameType
The possible contents of EntityTypeName.
ErrorAnalysisAnnotation.Types.QueryType
The query type used for finding the attributed items.
EvaluatedAnnotation.Types.EvaluatedAnnotationType
Describes the type of the EvaluatedAnnotation. The type is determined
Event.Types.Type
Describes whether an Event's Artifact is the Execution's input or output.
ExamplesOverride.Types.DataFormat
Data format enum.
Execution.Types.State
Describes the state of the Execution.
ExecutionName.ResourceNameType
The possible contents of ExecutionName.
ExplanationMetadata.Types.InputMetadata.Types.Encoding
Defines how a feature is encoded. Defaults to IDENTITY.
ExplanationMetadata.Types.InputMetadata.Types.Visualization.Types.ColorMap
The color scheme used for highlighting areas.
ExplanationMetadata.Types.InputMetadata.Types.Visualization.Types.OverlayType
How the original image is displayed in the visualization.
ExplanationMetadata.Types.InputMetadata.Types.Visualization.Types.Polarity
Whether to only highlight pixels with positive contributions, negative or both. Defaults to POSITIVE.
ExplanationMetadata.Types.InputMetadata.Types.Visualization.Types.Type
Type of the image visualization. Only applicable to [Integrated Gradients attribution][google.cloud.aiplatform.v1.ExplanationParameters.integrated_gradients_attribution].
ExplanationMetadata.Types.OutputMetadata.DisplayNameMappingOneofCase
Enum of possible cases for the "display_name_mapping" oneof.
ExplanationParameters.MethodOneofCase
Enum of possible cases for the "method" oneof.
ExportDataConfig.DestinationOneofCase
Enum of possible cases for the "destination" oneof.
ExportDataConfig.SplitOneofCase
Enum of possible cases for the "split" oneof.
ExportFeatureValuesRequest.ModeOneofCase
Enum of possible cases for the "mode" oneof.
Feature.Types.MonitoringStatsAnomaly.Types.Objective
If the objective in the request is both Import Feature Analysis and Snapshot Analysis, this objective could be one of them. Otherwise, this objective should be the same as the objective in the request.
Feature.Types.ValueType
An enum representing the value type of a feature.
FeatureName.ResourceNameType
The possible contents of FeatureName.
Featurestore.Types.State
Possible states a featurestore can have.
FeaturestoreMonitoringConfig.Types.ImportFeaturesAnalysis.Types.Baseline
Defines the baseline to do anomaly detection for feature values imported by each [ImportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ImportFeatureValues] operation.
FeaturestoreMonitoringConfig.Types.ImportFeaturesAnalysis.Types.State
The state defines whether to enable ImportFeature analysis.
FeaturestoreMonitoringConfig.Types.ThresholdConfig.ThresholdOneofCase
Enum of possible cases for the "threshold" oneof.
FeaturestoreName.ResourceNameType
The possible contents of FeaturestoreName.
FeatureValue.ValueOneofCase
Enum of possible cases for the "value" oneof.
FeatureValueDestination.DestinationOneofCase
Enum of possible cases for the "destination" oneof.
HyperparameterTuningJobName.ResourceNameType
The possible contents of HyperparameterTuningJobName.
ImportDataConfig.SourceOneofCase
Enum of possible cases for the "source" oneof.
ImportFeatureValuesRequest.FeatureTimeSourceOneofCase
Enum of possible cases for the "feature_time_source" oneof.
ImportFeatureValuesRequest.SourceOneofCase
Enum of possible cases for the "source" oneof.
Index.Types.IndexUpdateMethod
The update method of an Index.
IndexEndpointName.ResourceNameType
The possible contents of IndexEndpointName.
IndexName.ResourceNameType
The possible contents of IndexName.
InputDataConfig.DestinationOneofCase
Enum of possible cases for the "destination" oneof.
InputDataConfig.SplitOneofCase
Enum of possible cases for the "split" oneof.
JobState
Describes the state of a job.
MetadataSchema.Types.MetadataSchemaType
Describes the type of the MetadataSchema.
MetadataSchemaName.ResourceNameType
The possible contents of MetadataSchemaName.
MetadataStoreName.ResourceNameType
The possible contents of MetadataStoreName.
MigratableResource.ResourceOneofCase
Enum of possible cases for the "resource" oneof.
MigrateResourceRequest.RequestOneofCase
Enum of possible cases for the "request" oneof.
MigrateResourceResponse.MigratedResourceOneofCase
Enum of possible cases for the "migrated_resource" oneof.
Model.Types.DeploymentResourcesType
Identifies a type of Model's prediction resources.
Model.Types.ExportFormat.Types.ExportableContent
The Model content that can be exported.
ModelDeploymentMonitoringBigQueryTable.Types.LogSource
Indicates where does the log come from.
ModelDeploymentMonitoringBigQueryTable.Types.LogType
Indicates what type of traffic does the log belong to.
ModelDeploymentMonitoringJob.Types.MonitoringScheduleState
The state to Specify the monitoring pipeline.
ModelDeploymentMonitoringJobName.ResourceNameType
The possible contents of ModelDeploymentMonitoringJobName.
ModelDeploymentMonitoringObjectiveType
The Model Monitoring Objective types.
ModelEvaluationName.ResourceNameType
The possible contents of ModelEvaluationName.
ModelEvaluationSlice.Types.Slice.Types.SliceSpec.Types.SliceConfig.KindOneofCase
Enum of possible cases for the "kind" oneof.
ModelEvaluationSlice.Types.Slice.Types.SliceSpec.Types.Value.KindOneofCase
Enum of possible cases for the "kind" oneof.
ModelEvaluationSliceName.ResourceNameType
The possible contents of ModelEvaluationSliceName.
ModelMonitoringAlertConfig.AlertOneofCase
Enum of possible cases for the "alert" oneof.
ModelMonitoringObjectiveConfig.Types.ExplanationConfig.Types.ExplanationBaseline.DestinationOneofCase
Enum of possible cases for the "destination" oneof.
ModelMonitoringObjectiveConfig.Types.ExplanationConfig.Types.ExplanationBaseline.Types.PredictionFormat
The storage format of the predictions generated BatchPrediction job.
ModelMonitoringObjectiveConfig.Types.TrainingDataset.DataSourceOneofCase
Enum of possible cases for the "data_source" oneof.
ModelName.ResourceNameType
The possible contents of ModelName.
ModelSourceInfo.Types.ModelSourceType
Source of the model.
NasJobName.ResourceNameType
The possible contents of NasJobName.
NasJobOutput.OutputOneofCase
Enum of possible cases for the "output" oneof.
NasJobSpec.NasAlgorithmSpecOneofCase
Enum of possible cases for the "nas_algorithm_spec" oneof.
NasJobSpec.Types.MultiTrialAlgorithmSpec.Types.MetricSpec.Types.GoalType
The available types of optimization goals.
NasJobSpec.Types.MultiTrialAlgorithmSpec.Types.MultiTrialAlgorithm
The available types of multi-trial algorithms.
NasTrial.Types.State
Describes a NasTrial state.
NasTrialDetailName.ResourceNameType
The possible contents of NasTrialDetailName.
NearestNeighborSearchOperationMetadata.Types.RecordError.Types.RecordErrorType
NetworkName.ResourceNameType
The possible contents of NetworkName.
PipelineFailurePolicy
Represents the failure policy of a pipeline. Currently, the default of a pipeline is that the pipeline will continue to run until no more tasks can be executed, also known as PIPELINE_FAILURE_POLICY_FAIL_SLOW. However, if a pipeline is set to PIPELINE_FAILURE_POLICY_FAIL_FAST, it will stop scheduling any new tasks when a task has failed. Any scheduled tasks will continue to completion.
PipelineJob.Types.RuntimeConfig.Types.InputArtifact.KindOneofCase
Enum of possible cases for the "kind" oneof.
PipelineJobName.ResourceNameType
The possible contents of PipelineJobName.
PipelineState
Describes the state of a pipeline.
PipelineTaskDetail.Types.State
Specifies state of TaskExecution
PipelineTaskExecutorDetail.DetailsOneofCase
Enum of possible cases for the "details" oneof.
ReadFeatureValuesResponse.Types.EntityView.Types.Data.DataOneofCase
Enum of possible cases for the "data" oneof.
SampleConfig.FollowingBatchSampleSizeOneofCase
Enum of possible cases for the "following_batch_sample_size" oneof.
SampleConfig.InitialBatchSampleSizeOneofCase
Enum of possible cases for the "initial_batch_sample_size" oneof.
SampleConfig.Types.SampleStrategy
Sample strategy decides which subset of DataItems should be selected for human labeling in every batch.
SavedQueryName.ResourceNameType
The possible contents of SavedQueryName.
SearchDataItemsRequest.OrderOneofCase
Enum of possible cases for the "order" oneof.
SmoothGradConfig.GradientNoiseSigmaOneofCase
Enum of possible cases for the "GradientNoiseSigma" oneof.
SpecialistPoolName.ResourceNameType
The possible contents of SpecialistPoolName.
Study.Types.State
Describes the Study state.
StudyName.ResourceNameType
The possible contents of StudyName.
StudySpec.AutomatedStoppingSpecOneofCase
Enum of possible cases for the "automated_stopping_spec" oneof.
StudySpec.Types.Algorithm
The available search algorithms for the Study.
StudySpec.Types.MeasurementSelectionType
This indicates which measurement to use if/when the service automatically selects the final measurement from previously reported intermediate measurements. Choose this based on two considerations: A) Do you expect your measurements to monotonically improve? If so, choose LAST_MEASUREMENT. On the other hand, if you're in a situation where your system can "over-train" and you expect the performance to get better for a while but then start declining, choose BEST_MEASUREMENT. B) Are your measurements significantly noisy and/or irreproducible? If so, BEST_MEASUREMENT will tend to be over-optimistic, and it may be better to choose LAST_MEASUREMENT. If both or neither of (A) and (B) apply, it doesn't matter which selection type is chosen.
StudySpec.Types.MetricSpec.Types.GoalType
The available types of optimization goals.
StudySpec.Types.ObservationNoise
Describes the noise level of the repeated observations.
"Noisy" means that the repeated observations with the same Trial parameters may lead to different metric evaluations.
StudySpec.Types.ParameterSpec.ParameterValueSpecOneofCase
Enum of possible cases for the "parameter_value_spec" oneof.
StudySpec.Types.ParameterSpec.Types.ConditionalParameterSpec.ParentValueConditionOneofCase
Enum of possible cases for the "parent_value_condition" oneof.
StudySpec.Types.ParameterSpec.Types.ScaleType
The type of scaling that should be applied to this parameter.
TensorboardExperimentName.ResourceNameType
The possible contents of TensorboardExperimentName.
TensorboardName.ResourceNameType
The possible contents of TensorboardName.
TensorboardRunName.ResourceNameType
The possible contents of TensorboardRunName.
TensorboardTimeSeries.Types.ValueType
An enum representing the value type of a TensorboardTimeSeries.
TensorboardTimeSeriesName.ResourceNameType
The possible contents of TensorboardTimeSeriesName.
ThresholdConfig.ThresholdOneofCase
Enum of possible cases for the "threshold" oneof.
TimeSeriesDataPoint.ValueOneofCase
Enum of possible cases for the "value" oneof.
TrainingPipelineName.ResourceNameType
The possible contents of TrainingPipelineName.
Trial.Types.State
Describes a Trial state.
TrialName.ResourceNameType
The possible contents of TrialName.
UserActionReference.ReferenceOneofCase
Enum of possible cases for the "reference" oneof.
Value.ValueOneofCase
Enum of possible cases for the "value" oneof.
VersionName.ResourceNameType
The possible contents of VersionName.
WorkerPoolSpec.TaskOneofCase
Enum of possible cases for the "task" oneof.