Class Model (1.4.0)

public sealed class Model : IMessage<Model>, IEquatable<Model>, IDeepCloneable<Model>, IBufferMessage, IMessage

A trained machine learning Model.

Inheritance

Object > Model

Namespace

Google.Cloud.AIPlatform.V1

Assembly

Google.Cloud.AIPlatform.V1.dll

Constructors

Model()

public Model()

Model(Model)

public Model(Model other)
Parameter
NameDescription
otherModel

Properties

ArtifactUri

public string ArtifactUri { get; set; }

Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not present for AutoML Models.

Property Value
TypeDescription
String

ContainerSpec

public ModelContainerSpec ContainerSpec { get; set; }

Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel], and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models.

Property Value
TypeDescription
ModelContainerSpec

CreateTime

public Timestamp CreateTime { get; set; }

Output only. Timestamp when this Model was uploaded into Vertex AI.

Property Value
TypeDescription
Timestamp

DeployedModels

public RepeatedField<DeployedModelRef> DeployedModels { get; }

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

Property Value
TypeDescription
RepeatedField<DeployedModelRef>

Description

public string Description { get; set; }

The description of the Model.

Property Value
TypeDescription
String

DisplayName

public string DisplayName { get; set; }

Required. The display name of the Model. The name can be up to 128 characters long and can be consist of any UTF-8 characters.

Property Value
TypeDescription
String

EncryptionSpec

public EncryptionSpec EncryptionSpec { get; set; }

Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.

Property Value
TypeDescription
EncryptionSpec

Etag

public string Etag { get; set; }

Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.

Property Value
TypeDescription
String

ExplanationSpec

public ExplanationSpec ExplanationSpec { get; set; }

The default explanation specification for this Model.

The Model can be used for [requesting explanation][PredictionService.Explain] after being [deployed][google.cloud.aiplatform.v1.EndpointService.DeployModel] if it is populated. The Model can be used for [batch explanation][BatchPredictionJob.generate_explanation] if it is populated.

All fields of the explanation_spec can be overridden by [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1.DeployModelRequest.deployed_model], or [explanation_spec][google.cloud.aiplatform.v1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob].

If the default explanation specification is not set for this Model, this Model can still be used for [requesting explanation][PredictionService.Explain] by setting [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1.DeployModelRequest.deployed_model] and for [batch explanation][BatchPredictionJob.generate_explanation] by setting [explanation_spec][google.cloud.aiplatform.v1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob].

Property Value
TypeDescription
ExplanationSpec

Labels

public MapField<string, string> Labels { get; }

The labels with user-defined metadata to organize your Models.

Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.

See https://goo.gl/xmQnxf for more information and examples of labels.

Property Value
TypeDescription
MapField<String, String>

Metadata

public Value Metadata { get; set; }

Immutable. An additional information about the Model; the schema of the metadata can be found in [metadata_schema][google.cloud.aiplatform.v1.Model.metadata_schema_uri]. Unset if the Model does not have any additional information.

Property Value
TypeDescription
Value

MetadataSchemaUri

public string MetadataSchemaUri { get; set; }

Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.

Property Value
TypeDescription
String

ModelName

public ModelName ModelName { get; set; }

ModelName-typed view over the Name resource name property.

Property Value
TypeDescription
ModelName

Name

public string Name { get; set; }

The resource name of the Model.

Property Value
TypeDescription
String

PredictSchemata

public PredictSchemata PredictSchemata { get; set; }

The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].

Property Value
TypeDescription
PredictSchemata

SupportedDeploymentResourcesTypes

public RepeatedField<Model.Types.DeploymentResourcesType> SupportedDeploymentResourcesTypes { get; }

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1.Endpoint.deployed_models] object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an [Endpoint][google.cloud.aiplatform.v1.Endpoint] and does not support online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain]). Such a Model can serve predictions by using a [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob], if it has at least one entry each in [supported_input_storage_formats][google.cloud.aiplatform.v1.Model.supported_input_storage_formats] and [supported_output_storage_formats][google.cloud.aiplatform.v1.Model.supported_output_storage_formats].

Property Value
TypeDescription
RepeatedField<Model.Types.DeploymentResourcesType>

SupportedExportFormats

public RepeatedField<Model.Types.ExportFormat> SupportedExportFormats { get; }

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

Property Value
TypeDescription
RepeatedField<Model.Types.ExportFormat>

SupportedInputStorageFormats

public RepeatedField<string> SupportedInputStorageFormats { get; }

Output only. The formats this Model supports in [BatchPredictionJob.input_config][google.cloud.aiplatform.v1.BatchPredictionJob.input_config]. If [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri] exists, the instances should be given as per that schema.

The possible formats are:

  • jsonl The JSON Lines format, where each instance is a single line. Uses [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source].

  • csv The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source].

  • tf-record The TFRecord format, where each instance is a single record in tfrecord syntax. Uses [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source].

  • tf-record-gzip Similar to tf-record, but the file is gzipped. Uses [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source].

  • bigquery Each instance is a single row in BigQuery. Uses [BigQuerySource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.bigquery_source].

  • file-list Each line of the file is the location of an instance to process, uses gcs_source field of the [InputConfig][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig] object.

If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].

Property Value
TypeDescription
RepeatedField<String>

SupportedOutputStorageFormats

public RepeatedField<string> SupportedOutputStorageFormats { get; }

Output only. The formats this Model supports in [BatchPredictionJob.output_config][google.cloud.aiplatform.v1.BatchPredictionJob.output_config]. If both [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri] and [PredictSchemata.prediction_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.prediction_schema_uri] exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema).

The possible formats are:

  • jsonl The JSON Lines format, where each prediction is a single line. Uses [GcsDestination][google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig.gcs_destination].

  • csv The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsDestination][google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig.gcs_destination].

  • bigquery Each prediction is a single row in a BigQuery table, uses [BigQueryDestination][google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig.bigquery_destination] .

If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].

Property Value
TypeDescription
RepeatedField<String>

TrainingPipeline

public string TrainingPipeline { get; set; }

Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.

Property Value
TypeDescription
String

TrainingPipelineAsTrainingPipelineName

public TrainingPipelineName TrainingPipelineAsTrainingPipelineName { get; set; }

TrainingPipelineName-typed view over the TrainingPipeline resource name property.

Property Value
TypeDescription
TrainingPipelineName

UpdateTime

public Timestamp UpdateTime { get; set; }

Output only. Timestamp when this Model was most recently updated.

Property Value
TypeDescription
Timestamp