CUD KPI のクエリ
次の重要な KPI 指標を使用すると、新しいデータモデルでシステムが正常に機能していることを確認できます。
- コミットメントによる削減額($): コミットメントによる削減額を示します。この指標では、式
(Cost of resources at on-demand rates - cost of resources with commitment discounts)が使用されます。 - コミットメントによる削減額(%): コミットメントによる削減額の割合を示します。この指標では、式
(Commitment savings / costs of resources at on-demand rates)*100が使用されます。 - コミットメントの使用率(%): コミットメントをどれだけ効果的に使用しているかを示す指標です。割合で表されます。この指標では、式
(Commitment applied to eligible spend / total commitment)が使用されます。 実質削減率(%): 確約割引の投資収益率(ROI)を示します。この指標では、式
(Commitment Savings / On-Demand Equivalent Spend)が使用されます。費用データに関する分析情報をより詳しく把握するには、次の BigQuery サンプルクエリを使用して、以下の KPI に役立つ情報を取得します。
適切なサンプルクエリを選択する
データモデルの変更に合わせてクエリを更新できるように、KPI サンプルクエリの 2 つのバージョンを用意しています。次のいずれかを選択します。
従来のデータモデルを使用した KPI クエリのサンプル
新しいデータモデルを使用していない場合は、次のサンプルクエリを使用します。
これらのクエリは、コンピューティング フレキシブル CUD 専用です。他の費用ベースの CUD プロダクトをクエリするには、次の値を変更する必要があります。
cud_productsku.descriptioncredit.type
CUD の費用と CUD による費用削減
WITH cost_data AS ( SELECT * FROM project.dataset.gcp_billing_export_resource_v1_NNNNNN_NNNNNN_NNNNNN WHERE invoice.month = 'month' ), cud_product_data AS ( SELECT * FROM UNNEST( [ STRUCT( 'Compute Engine Flexible CUDs' AS cud_product, 'Commitment - dollar based v1: GCE' AS cud_fee_regex, 'GCE Commitments' AS cud_credit_regex)]) ), cud_costs AS ( SELECT invoice.month AS invoice_month, cud_product_data.cud_product, IFNULL( ( SELECT l.value FROM UNNEST(labels) l WHERE l.key = 'goog-originating-service-id' ), service.id) AS service, SUM(cost) AS cost FROM cost_data JOIN cud_product_data ON REGEXP_CONTAINS( sku.description, cud_fee_regex) GROUP BY 1, 2, 3 ), cud_credits AS ( SELECT invoice.month AS invoice_month, cud_product, service.id AS service, SUM(credit.amount) AS spend_cud_credits FROM cost_data, UNNEST(credits) AS credit JOIN cud_product_data ON REGEXP_CONTAINS( credit.full_name, cud_credit_regex) WHERE credit.type = 'COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE' GROUP BY 1, 2, 3 ) SELECT invoice_month, cud_product, cost As commitment_cost, -1 * (cost + IFNULL(spend_cud_credits, 0)) AS commitment_savings FROM cud_costs LEFT JOIN cud_credits USING (invoice_month, cud_product, service);
monthは、現在の年と月をYYYYMM形式で指定します(例: 202504)。
コミットメントの使用率
WITH cost_data AS ( SELECT * FROM project.dataset.gcp_billing_export_resource_v1_NNNNNN_NNNNNN_NNNNNN WHERE invoice.month = 'month' ), cud_product_data AS ( SELECT * FROM UNNEST( [ STRUCT( 'Compute Engine Flexible CUDs' AS cud_product, 'Commitment - dollar based v1: GCE' AS cud_fee_regex, 'GCE Commitments' AS cud_credit_regex)]) ), cud_commitment_amount AS ( SELECT invoice.month AS invoice_month, cud_product_data.cud_product, SUM(usage.amount_in_pricing_units / 100) AS commitment_amount, FROM cost_data JOIN cud_product_data ON REGEXP_CONTAINS( sku.description, cud_fee_regex) GROUP BY 1, 2 ), cud_utilized_commitment_amount AS ( SELECT invoice.month AS invoice_month, cud_product, ABS(SUM(credit.amount / currency_conversion_rate)) AS utilized_commitment_amount FROM cost_data, UNNEST(credits) AS credit JOIN cud_product_data ON REGEXP_CONTAINS( credit.full_name, cud_credit_regex) WHERE credit.type = 'COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE' GROUP BY 1, 2 ) SELECT invoice_month, cud_product, utilized_commitment_amount / commitment_amount *100 AS commitment_utilization FROM cud_commitment_amount LEFT JOIN cud_utilized_commitment_amount USING (invoice_month, cud_product);
monthは、現在の年と月をYYYYMM形式で指定します(例: 202504)。
実質削減率
WITH cost_data AS ( SELECT * FROM project.dataset.gcp_billing_export_resource_v1_NNNNNN_NNNNNN_NNNNNN WHERE invoice.month = 'month' ), cud_product_data AS ( SELECT * FROM UNNEST( [ STRUCT( 'Compute Engine Flexible CUDs' AS cud_product, 'Commitment - dollar based v1: GCE' AS cud_fee_regex, 'GCE Commitments' AS cud_credit_regex)]) ), eligible_cud_skus AS ( SELECT sku_id FROM example_project.dataset.flex_cud_skus ), eligible_cud_spend AS ( SELECT invoice.month AS invoice_month, SUM(cost) AS cost, SUM( IFNULL( ( SELECT SUM(credit.amount) FROM UNNEST(credits) AS credit WHERE credit.type IN ( 'COMMITTED_USAGE_DISCOUNT', 'COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE', 'DISCOUNT', 'FREE_TIER') ), 0)) AS costs_ineligible_for_cud, FROM cost_data JOIN eligible_cud_skus ON sku.id = sku_id GROUP BY 1 ), cud_costs AS ( SELECT invoice.month AS invoice_month, cud_product_data.cud_product, IFNULL( ( SELECT l.value FROM UNNEST(labels) l WHERE l.key = 'goog-originating-service-id' ), service.id) AS service, SUM(cost) AS cost FROM cost_data JOIN cud_product_data ON REGEXP_CONTAINS( sku.description, cud_fee_regex) GROUP BY 1, 2, 3 ), cud_credits AS ( SELECT invoice.month AS invoice_month, SUM(credit.amount) AS spend_cud_credits FROM cost_data, UNNEST(credits) AS credit WHERE credit.type = 'COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE' AND REGEXP_CONTAINS(credit.full_name, 'GCE Commitments') GROUP BY 1 ), cud_savings AS ( SELECT invoice_month, Cud_product, spend_cud_credits as spend_cud_credits, -1 * (cost + IFNULL(spend_cud_credits, 0)) AS commitment_savings FROM cud_costs LEFT JOIN cud_credits USING (invoice_month) ) SELECT Invoice_month, commitment_savings * 100 / (cost + costs_ineligible_for_cud - IFNULL(spend_cud_credits, 0)) AS effective_savings_rate FROM eligible_cud_spend LEFT JOIN cud_savings USING (invoice_month);
monthは、現在の年と月をYYYYMM形式で指定します(例: 202504)。
新しいデータモデルを使用した KPI クエリのサンプル
新しいデータモデルを導入している場合は、このサンプルクエリを使用します。
これらのクエリは、コンピューティング フレキシブル CUD 専用です。他の費用ベースの CUD プロダクトをクエリするには、次の値を変更する必要があります。
cud_fee_skusconsumption_model.id
SET bigquery_billing_project = billing-project-id; WITH cost_data AS ( SELECT * FROM project.dataset.gcp_billing_export_resource_v1_NNNNNN_NNNNNN_NNNNNN WHERE invoice.month = 'month' ), cud_fee_skus AS ( SELECT * FROM UNNEST( [ '5515-81A8-03A2', 'B22F-51BE-D599']) fee_sku_id ), cud_costs AS ( SELECT invoice.month AS invoice_month, subscription.instance_id AS subscription_instance_id, IFNULL( ( SELECT l.value FROM UNNEST(labels) l WHERE l.key = 'goog-originating-service-id' ), service.id) AS service, SUM(cost) AS commitment_cost, SUM( ( SELECT SUM(credit.amount) FROM UNNEST(credits) credit WHERE credit.type = 'FEE_UTILIZATION_OFFSET' )) AS fee_utilization_offset FROM cost_data JOIN cud_fee_skus ON fee_sku_id = sku.id GROUP BY 1, 2, 3 ), cud_savings AS ( SELECT invoice.month AS invoice_month, subscription.instance_id, service.id AS service, SUM(cost - cost_at_effective_price_default) AS cud_savings_amount, SUM(cost_at_effective_price_default) AS on_demand_costs FROM cost_data WHERE consumption_model.id IS NOT NULL AND consumption_model.id IN ('D97B-0795-975B','70D7-D1AB-12A4') GROUP BY 1, 2, 3 ) SELECT invoice_month, subscription_instance_id, service, commitment_cost, commitment_cost + fee_utilization_offset + IFNULL(cud_savings_amount, 0) AS commitment_savings, ABS(fee_utilization_offset) / commitment_cost * 100 AS cud_utilization_percent, (commitment_cost + fee_utilization_offset + IFNULL(cud_savings_amount, 0)) / IFNULL(on_demand_costs, 1) * 100 AS effective_savings_rate FROM cud_costs LEFT JOIN cud_savings USING (invoice_month, subscription_instance_id, service);
monthは、現在の年と月をYYYYMM形式で指定します(例: 202504)。
過去のコンピューティング フレキシブル CUD のクエリと分析を行う
次のクエリを使用すると、1 つのクエリ内で過去の CUD を分析できます。オプトイン日を検出し、以前の CUD モデルと新しい CUD モデルの両方に存在するデータ型を処理します。このクエリを使用するには、新しい CUD モデルにすでに移行している必要があります。
このクエリは、コンピューティング フレキシブル CUD 専用です。他の費用ベースの CUD プロダクトをクエリするには、次の値を変更する必要があります。
cud_productsku.descriptionCredit.typeCredit.full_namecud_fee_skusconsumption_model.id
-- This query calculates both legacy and new model CUD KPIs, splitting the data by a migration event. -- The migration event is defined as the first time the consumption_model.description is not 'Default'. -- It calculates commitment cost, savings, utilization, and effective savings rate for both models. WITH -- Determine the migration timestamp based on the first usage of a non-default consumption model migration_hour AS ( SELECT MIN(t.usage_start_time) AS smallest_usage_start_time FROM `project.dataset.gcp_billing_export_resource_v1_NNNNNN_NNNNNN_NNNNNN` AS t WHERE t.consumption_model.description != 'Default' ), -- Filter for cost data that occurred before the migration legacy_cost_data AS ( SELECT * FROM `project.dataset.gcp_billing_export_resource_v1_NNNNNN_NNNNNN_NNNNNN` WHERE usage_start_time < ( SELECT smallest_usage_start_time FROM migration_hour ) ), -- Filter for cost data that occurred at or after the migration new_cost_data AS ( SELECT * FROM `project.dataset.gcp_billing_export_resource_v1_NNNNNN_NNNNNN_NNNNNN` WHERE usage_start_time >= ( SELECT smallest_usage_start_time FROM migration_hour ) ), -- Define CUD product metadata for matching fees and credits cud_product_data AS ( SELECT * FROM UNNEST([ STRUCT( 'Compute Engine Flexible CUDs' AS cud_product, 'Commitment - dollar based v1: GCE' AS cud_fee_regex, 'GCE Commitments' AS cud_credit_regex)]) ), -- ================================================================================================= -- Part 1: Legacy Model Calculations (before migration) -- ================================================================================================= legacy_commitment_costs AS ( SELECT usage_start_time, pd.cud_product, IFNULL(( SELECT l.value FROM UNNEST(labels) l WHERE l.key = 'goog-originating-service-id' ), service.id) AS service, SUM(cost) AS cost FROM legacy_cost_data JOIN cud_product_data AS pd ON REGEXP_CONTAINS(sku.description, pd.cud_fee_regex) GROUP BY 1, 2, 3 ), legacy_cud_credits AS ( SELECT usage_start_time, pd.cud_product, service.id AS service, SUM(credit.amount) AS spend_cud_credits FROM legacy_cost_data, UNNEST(credits) AS credit JOIN cud_product_data AS pd ON REGEXP_CONTAINS(credit.full_name, pd.cud_credit_regex) WHERE credit.type = 'COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE' GROUP BY 1, 2, 3 ), legacy_commitment_savings AS ( SELECT c.usage_start_time, c.cud_product, c.service, SUM(c.cost) AS commitment_cost, SUM(-1 * (c.cost + IFNULL(cr.spend_cud_credits, 0))) AS commitment_savings FROM legacy_commitment_costs AS c LEFT JOIN legacy_cud_credits AS cr USING (usage_start_time, cud_product, service) GROUP BY 1, 2, 3 ), legacy_commitment_amount AS ( SELECT usage_start_time, pd.cud_product, SUM(usage.amount_in_pricing_units / 100) AS commitment_amount FROM legacy_cost_data JOIN cud_product_data AS pd ON REGEXP_CONTAINS(sku.description, pd.cud_fee_regex) GROUP BY 1, 2 ), legacy_utilized_commitment AS ( SELECT usage_start_time, pd.cud_product, ABS(SUM(credit.amount / currency_conversion_rate)) AS utilized_commitment_amount FROM legacy_cost_data, UNNEST(credits) AS credit JOIN cud_product_data AS pd ON REGEXP_CONTAINS(credit.full_name, pd.cud_credit_regex) WHERE credit.type = 'COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE' GROUP BY 1, 2 ), legacy_cud_utilization AS ( SELECT ca.usage_start_time, ca.cud_product, SAFE_DIVIDE(uc.utilized_commitment_amount, ca.commitment_amount) * 100 AS cud_utilization_percent FROM legacy_commitment_amount AS ca LEFT JOIN legacy_utilized_commitment AS uc USING (usage_start_time, cud_product) ), eligible_cud_skus AS ( SELECT sku_id FROM UNNEST([ /* Insert the full list of CUD eligible SKUs 'F35A-5D39-DA9D', '7E09-0800-D3BA', '1641-654E-D130', 'D616-27D3-51E1'*/ ]) AS sku_id ), eligible_cud_spend AS ( SELECT usage_start_time, SUM(cost) AS cost, SUM(IFNULL(( SELECT SUM(credit.amount) FROM UNNEST(credits) AS credit WHERE credit.type IN ('COMMITTED_USAGE_DISCOUNT', 'COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE', 'DISCOUNT', 'FREE_TIER') ), 0)) AS costs_ineligible_for_cud FROM legacy_cost_data JOIN eligible_cud_skus ON sku.id = eligible_cud_skus.sku_id GROUP BY 1 ), total_cud_savings AS ( SELECT c.usage_start_time, -1 * (c.cost + IFNULL(cr.spend_cud_credits, 0)) AS commitment_savings, cr.spend_cud_credits FROM ( SELECT usage_start_time, SUM(cost) AS cost FROM legacy_cost_data JOIN cud_product_data pd ON REGEXP_CONTAINS(sku.description, pd.cud_fee_regex) GROUP BY 1 ) AS c LEFT JOIN ( SELECT usage_start_time, SUM(credit.amount) AS spend_cud_credits FROM legacy_cost_data, UNNEST(credits) AS credit WHERE credit.type = 'COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE' AND REGEXP_CONTAINS(credit.full_name, 'GCE Commitments') GROUP BY 1 ) AS cr USING (usage_start_time) ), -- ================================================================================================= -- Part 2: New Model Calculations (at or after migration) -- ================================================================================================= new_model_commitment_costs AS ( SELECT usage_start_time, -- Changed from invoice.month subscription.instance_id AS subscription_instance_id, IFNULL(( SELECT l.value FROM UNNEST(labels) l WHERE l.key = 'goog-originating-service-id' ), service.id) AS service, SUM(cost) AS commitment_cost, SUM(( SELECT SUM(credit.amount) FROM UNNEST(credits) credit WHERE credit.type = 'FEE_UTILIZATION_OFFSET' )) AS fee_utilization_offset FROM new_cost_data JOIN ( SELECT * FROM UNNEST(['5515-81A8-03A2', 'B22F-51BE-D599']) fee_sku_id ) AS cud_fee_skus ON fee_sku_id = sku.id GROUP BY 1, 2, 3 ), new_model_cud_savings AS ( SELECT usage_start_time, -- Changed from invoice.month subscription.instance_id AS subscription_instance_id, service.id AS service, SUM(cost - cost_at_effective_price_default) AS cud_savings_amount, SUM(cost_at_effective_price_default) AS on_demand_costs FROM new_cost_data WHERE consumption_model.id IS NOT NULL AND consumption_model.id IN ('D97B-0795-975B', '70D7-D1AB-12A4') GROUP BY 1, 2, 3 ), -- ================================================================================================= -- Final Combination -- ================================================================================================= legacy_kpis AS ( SELECT cs.usage_start_time, 'legacy' AS model_version, CAST(NULL AS STRING) AS subscription_instance_id, cs.cud_product, cs.service, cs.commitment_cost, cs.commitment_savings, u.cud_utilization_percent, NULL AS effective_savings_rate FROM legacy_commitment_savings AS cs LEFT JOIN legacy_cud_utilization AS u USING (usage_start_time, cud_product) UNION ALL SELECT es.usage_start_time, 'legacy' AS model_version, CAST(NULL AS STRING) AS subscription_instance_id, NULL AS cud_product, NULL AS service, NULL AS commitment_cost, NULL AS commitment_savings, NULL AS cud_utilization_percent, SAFE_DIVIDE(s.commitment_savings, (es.cost + es.costs_ineligible_for_cud - IFNULL(s.spend_cud_credits, 0))) * 100 AS effective_savings_rate FROM eligible_cud_spend AS es LEFT JOIN total_cud_savings AS s USING (usage_start_time) ), new_kpis AS ( SELECT ncc.usage_start_time, 'new' AS model_version, CAST(ncc.subscription_instance_id AS STRING) AS subscription_instance_id, CAST(NULL AS STRING) AS cud_product, ncc.service, ncc.commitment_cost, ncc.commitment_cost + ncc.fee_utilization_offset + IFNULL(ncs.cud_savings_amount, 0) AS commitment_savings, SAFE_DIVIDE(ABS(ncc.fee_utilization_offset), ncc.commitment_cost) * 100 AS cud_utilization_percent, SAFE_DIVIDE((ncc.commitment_cost + ncc.fee_utilization_offset + IFNULL(ncs.cud_savings_amount, 0)), IFNULL(ncs.on_demand_costs, 1)) * 100 AS effective_savings_rate FROM new_model_commitment_costs AS ncc LEFT JOIN new_model_cud_savings AS ncs USING (usage_start_time, subscription_instance_id, service) ) SELECT * FROM legacy_kpis UNION ALL SELECT * FROM new_kpis;
関連トピック
- 費用ベースの CUD プログラムの改善
- 費用ベースの CUD のデータモデルの変更
- 新しい CUD モデルへの移行のタイムライン
- 移行後に割引を確認する
- 購入する CUD の適切な量を選択する
- 移行された CUD SKU、オファー、使用量モデル ID
- Billing ユーザー インターフェースの改善