Consulta los resultados de Cloud DLP en BigQuery

Cuando tus resultados se transfieren a BigQuery, los datos se escriben en una tabla nueva o una existente. Para obtener más información sobre las acciones, consulta el tema conceptual Acciones.

Consultas de muestra

Puedes usar las siguientes consultas de muestra para analizar tus resultados. También puedes usar las consultas en una herramienta de visualización, como Google Data Studio. Estas consultas se proporcionan con el fin de ayudarte a comenzar a realizar consultas de los datos de tus resultados.

En cada una de las siguientes consultas, reemplaza [DATASET] por el nombre del conjunto de datos de BigQuery, [TABLE_ID] por el ID de la tabla y [PROJECT_ID] por el identificador del proyecto.

Selecciona el recuento de cada Infotipo

Cloud Console

SELECT info_type.name,
COUNT(info_type.name) AS count
FROM [PROJECT_ID].[DATASET].[TABLE_ID],
GROUP BY info_type.name
ORDER BY count DESC;

Línea de comandos

bq query --use_legacy_sql=false ' SELECT info_type.name,
COUNT(info_type.name) AS count
FROM [PROJECT_ID].[DATASET].[TABLE_ID],
GROUP BY info_type.name ORDER BY count DESC;'

Selecciona el recuento de cada Infotipo por día

Cloud Console

SELECT info_type.name, cast(TIMESTAMP_SECONDS(create_time.seconds) as date) as day,
COUNT(locations.container_name) AS count
FROM [PROJECT_ID].[DATASET].[TABLE_ID],
UNNEST(location.content_locations) AS locations
GROUP BY info_type.name, day
ORDER BY count DESC;

Línea de comandos

bq query --use_legacy_sql=false ' SELECT info_type.name,
cast(TIMESTAMP_SECONDS(create_time.seconds) as date) as day,
COUNT(locations.container_name) AS count FROM [PROJECT_ID].[DATASET].[TABLE_ID],
UNNEST(location.content_locations) AS locations
GROUP BY info_type.name, day ORDER BY count DESC;'

Selecciona el recuento de cada Infotipo en cada contenedor

Cloud Console

SELECT info_type.name, locations.container_name,
COUNT(locations.container_name) AS count
FROM [PROJECT_ID].[DATASET].[TABLE_ID],
UNNEST(location.content_locations) AS locations
GROUP BY locations.container_name, info_type.name
ORDER BY count DESC;

Línea de comandos

bq query --use_legacy_sql=false ' SELECT info_type.name, locations.container_name,
COUNT(locations.container_name) AS count FROM [PROJECT_ID].[DATASET].[TABLE_ID],
UNNEST(location.content_locations) AS locations
GROUP BY locations.container_name,info_type.name ORDER BY count DESC;'

Selecciona los tipos de resultados encontrados para cada columna de una tabla

Mediante esta consulta, se agruparán todos los resultados por nombre de columna, con el fin de funcionar en los resultados de un trabajo de inspección de BigQuery, lo que es útil si intentas identificar los tipos que son probables para una columna determinada. Puedes ajustar la configuración si modificas las cláusulas WHERE y HAVING. Por ejemplo, si se incluyen varios resultados de tabla en la tabla de resultados, puedes limitarlos a solo una ejecución de trabajo o un nombre de tabla.

Cloud Console

SELECT
  table_counts.field_name,
  STRING_AGG( CONCAT(" ",table_counts.name," [count: ",CAST(table_counts.count_total AS String),"]")
  ORDER BY
    table_counts.count_total DESC) AS infoTypes
FROM (
  SELECT
    locations.record_location.field_id.name AS field_name,
    info_type.name,
    COUNT(*) AS count_total
  FROM
    [PROJECT_ID].[DATASET].[TABLE_ID],
    UNNEST(location.content_locations) AS locations
  WHERE
    (likelihood = 'LIKELY'
      OR likelihood = 'VERY_LIKELY'
      OR likelihood = 'POSSIBLE')
  GROUP BY
    locations.record_location.field_id.name,
    info_type.name
  HAVING
    count_total>200 ) AS table_counts
GROUP BY
  table_counts.field_name
ORDER BY
  table_counts.field_name

Mediante la consulta anterior, se puede producir un resultado como este para una tabla de muestra, en el que la columna de Infotipos indica cuántas instancias de cada Infotipo se encontraron en esa columna.

field_name Infotipos
field1 CUSTOM_USER_US [count: 7004], CUSTOM_USER_EU [count: 2996]
field2 US_VEHICLE_IDENTIFICATION_NUMBER [count: 9597]
field3 EMAIL_ADDRESS [count: 10000]
field4 IP_ADDRESS [count: 10000]
field5 PHONE_NUMBER [count: 7815]
field6 US_SOCIAL_SECURITY_NUMBER [count: 10000]
field7 CREDIT_CARD_NUMBER [count: 10000]