Cette page décrit les étapes à suivre pour mettre en œuvre des mesures correctives basées sur les résultats des profils de données.
Risque élevé lié aux données
Les colonnes ou tables présentant un risque élevé lié aux données sont celles contenant potentiellement des informations sensibles sans protection supplémentaire. Pour réduire le score de risque lié aux données, procédez comme suit :
Pour les colonnes BigQuery contenant des données sensibles, appliquez un tag avec stratégie BigQuery pour restreindre l'accès aux comptes disposant de droits d'accès spécifiques.
Avant d'apporter cette modification, assurez-vous que votre agent de service dispose des autorisations requises pour profiler les tables avec des restrictions au niveau des colonnes. Sinon, la protection des données sensibles affiche une erreur. Pour en savoir plus, consultez la page Résoudre les problèmes liés au profileur de données.
Anonymisez les données sensibles brutes à l'aide de techniques d'anonymisation telles que le masquage et la tokenisation.
Si vous n'avez pas besoin des données à haut risque, envisagez de supprimer les colonnes sensibles.
Score de texte libre élevé
Une colonne avec un score en texte libre élevé, en particulier une colonne qui indique plusieurs infoTypes (comme PHONE_NUMBER
, US_SOCIAL_SECURITY_NUMBER
et DATE_OF_BIRTH
), peut contenir des données non structurées et des instances d'informations permettant d'identifier personnellement l'utilisateur. Cette colonne peut être un champ de note ou de commentaire. Le texte libre présente un risque potentiel. Par exemple, dans ces champs, un utilisateur peut saisir "Le client est né le 1er Janvier 1985".
La protection des données sensibles est conçue pour traiter les données non structurées. Pour mieux comprendre ce type de données, envisagez de procéder comme suit :
Pour les données BigQuery, vous pouvez identifier les lignes ou les cellules contenant des informations permettant d'identifier personnellement l'utilisateur en exécutant une inspection à la demande sur la table BigQuery.
Anonymisez les données sensibles brutes à l'aide de techniques telles que le masquage et la tokenisation.
Étapes suivantes
Découvrez comment la protection des données sensibles calcule les niveaux de risque lié aux données et de sensibilité de vos tables et colonnes.
Découvrez comment la tokenisation rend les données utilisables sans remettre en cause la confidentialité.
Découvrez comment Forrester a classé Google Cloud parmi les leaders dans le domaine des plates-formes de sécurité de données non structurées.