Plantilla de Cloud Storage a BigQuery
Usa la plantilla de Dataproc Serverless de Cloud Storage a BigQuery para extraer datos de Cloud Storage a BigQuery.
Usa la plantilla
Ejecuta la plantilla con gcloud CLI o la API de Dataproc.
gcloud
Antes de usar cualquiera de los datos de comando a continuación, realiza los siguientes reemplazos:
- PROJECT_ID: Obligatorio. El Google Cloud ID de tu proyecto que aparece en la Configuración de IAM
- REGION: Obligatorio. Región de Compute Engine.
- TEMPLATE_VERSION: Obligatorio. Especifica
latest
para la versión más reciente de la plantilla o la fecha de una versión específica, por ejemplo,2023-03-17_v0.1.0-beta
(visita gs://dataproc-templates-binaries o ejecutagcloud storage ls gs://dataproc-templates-binaries
para ver una lista de las versiones de plantilla disponibles). - CLOUD_STORAGE_PATH: Obligatorio. Ruta de acceso de Cloud Storage de origen.
Ejemplo:
gs://dataproc-templates/hive_to_cloud_storage_output"
- FORMAT: Obligatorio. Formato de los datos de entrada. Opciones:
avro
,parquet
,csv
ojson
. Nota: Si esavro
, debes agregar "file:///usr/lib/spark/connector/spark-avro.jar
" al campo de API o a la marcajars
de gcloud CLI.Ejemplo (el prefijo
file://
hace referencia a un archivo jar de Dataproc Serverless):--jars=file:///usr/lib/spark/connector/spark-avro.jar,
[, ... other jars] - DATASET: Obligatorio. Es el conjunto de datos de BigQuery de destino.
- TABLE: Obligatorio. Tabla de BigQuery de destino.
- TEMP_BUCKET: Obligatorio. Bucket temporal de Cloud Storage que se usa para almacenar datos en etapa intermedia antes de cargarlos en BigQuery.
- SUBNET: Opcional Si no se especifica una subred, se selecciona la subred en la REGION especificada en la red
default
.Ejemplo:
projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME
- TEMPVIEW y SQL_QUERY: opcional. Puedes usar estos dos parámetros opcionales para aplicar una transformación de Spark SQL mientras cargas datos en BigQuery. TEMPVIEW es el nombre de la vista temporal y SQL_QUERY es la sentencia de consulta. TEMPVIEW y el nombre de la tabla en SQL_QUERY deben coincidir.
- SERVICE_ACCOUNT: Opcional Si no se proporciona, se usa la cuenta de servicio predeterminada de Compute Engine.
- PROPERTY y PROPERTY_VALUE: Opcional. Es una lista separada por comas de pares propiedad de Spark=
value
. - LABEL y LABEL_VALUE: Opcional. Es una lista separada por comas de pares
label
=value
. - LOG_LEVEL: Opcional Nivel de registro. Puede ser una de las siguientes opciones:
ALL
,DEBUG
,ERROR
,FATAL
,INFO
,OFF
,TRACE
oWARN
. Valor predeterminado:INFO
. -
KMS_KEY: Opcional La clave de Cloud Key Management Service que se usará para la encriptación. Si no se especifica una clave, los datos se encriptan en reposo con un Google-owned and Google-managed encryption key.
Ejemplo:
projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME
Ejecuta el siguiente comando:
Linux, macOS o Cloud Shell
gcloud dataproc batches submit spark \ --class=com.google.cloud.dataproc.templates.main.DataProcTemplate \ --version="1.2" \ --project="PROJECT_ID" \ --region="REGION" \ --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar" \ --subnet="SUBNET" \ --kms-key="KMS_KEY" \ --service-account="SERVICE_ACCOUNT" \ --properties="PROPERTY=PROPERTY_VALUE" \ --labels="LABEL=LABEL_VALUE" \ -- --template=GCSTOBIGQUERY \ --templateProperty log.level="LOG_LEVEL" \ --templateProperty project.id="PROJECT_ID" \ --templateProperty gcs.bigquery.input.location="CLOUD_STORAGE_PATH" \ --templateProperty gcs.bigquery.input.format="FORMAT" \ --templateProperty gcs.bigquery.output.dataset="DATASET" \ --templateProperty gcs.bigquery.output.table="TABLE" \ --templateProperty gcs.bigquery.temp.bucket.name="TEMP_BUCKET" \ --templateProperty gcs.bigquery.temp.table="TEMPVIEW" \ --templateProperty gcs.bigquery.temp.query="SQL_QUERY"
Windows (PowerShell)
gcloud dataproc batches submit spark ` --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ` --version="1.2" ` --project="PROJECT_ID" ` --region="REGION" ` --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar" ` --subnet="SUBNET" ` --kms-key="KMS_KEY" ` --service-account="SERVICE_ACCOUNT" ` --properties="PROPERTY=PROPERTY_VALUE" ` --labels="LABEL=LABEL_VALUE" ` -- --template=GCSTOBIGQUERY ` --templateProperty log.level="LOG_LEVEL" ` --templateProperty project.id="PROJECT_ID" ` --templateProperty gcs.bigquery.input.location="CLOUD_STORAGE_PATH" ` --templateProperty gcs.bigquery.input.format="FORMAT" ` --templateProperty gcs.bigquery.output.dataset="DATASET" ` --templateProperty gcs.bigquery.output.table="TABLE" ` --templateProperty gcs.bigquery.temp.bucket.name="TEMP_BUCKET" ` --templateProperty gcs.bigquery.temp.table="TEMPVIEW" ` --templateProperty gcs.bigquery.temp.query="SQL_QUERY"
Windows (cmd.exe)
gcloud dataproc batches submit spark ^ --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ^ --version="1.2" ^ --project="PROJECT_ID" ^ --region="REGION" ^ --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar" ^ --subnet="SUBNET" ^ --kms-key="KMS_KEY" ^ --service-account="SERVICE_ACCOUNT" ^ --properties="PROPERTY=PROPERTY_VALUE" ^ --labels="LABEL=LABEL_VALUE" ^ -- --template=GCSTOBIGQUERY ^ --templateProperty log.level="LOG_LEVEL" ^ --templateProperty project.id="PROJECT_ID" ^ --templateProperty gcs.bigquery.input.location="CLOUD_STORAGE_PATH" ^ --templateProperty gcs.bigquery.input.format="FORMAT" ^ --templateProperty gcs.bigquery.output.dataset="DATASET" ^ --templateProperty gcs.bigquery.output.table="TABLE" ^ --templateProperty gcs.bigquery.temp.bucket.name="TEMP_BUCKET" ^ --templateProperty gcs.bigquery.temp.table="TEMPVIEW" ^ --templateProperty gcs.bigquery.temp.query="SQL_QUERY"
REST
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
- PROJECT_ID: Obligatorio. El Google Cloud ID de tu proyecto que aparece en la Configuración de IAM
- REGION: Obligatorio. Región de Compute Engine.
- TEMPLATE_VERSION: Obligatorio. Especifica
latest
para la versión más reciente de la plantilla o la fecha de una versión específica, por ejemplo,2023-03-17_v0.1.0-beta
(visita gs://dataproc-templates-binaries o ejecutagcloud storage ls gs://dataproc-templates-binaries
para ver una lista de las versiones de plantilla disponibles). - CLOUD_STORAGE_PATH: Obligatorio. Ruta de acceso de Cloud Storage de origen.
Ejemplo:
gs://dataproc-templates/hive_to_cloud_storage_output"
- FORMAT: Obligatorio. Formato de los datos de entrada. Opciones:
avro
,parquet
,csv
ojson
. Nota: Si esavro
, debes agregar "file:///usr/lib/spark/connector/spark-avro.jar
" al campo de API o a la marcajars
de gcloud CLI.Ejemplo (el prefijo
file://
hace referencia a un archivo jar de Dataproc Serverless):--jars=file:///usr/lib/spark/connector/spark-avro.jar,
[, ... other jars] - DATASET: Obligatorio. Es el conjunto de datos de BigQuery de destino.
- TABLE: Obligatorio. Tabla de BigQuery de destino.
- TEMP_BUCKET: Obligatorio. Bucket temporal de Cloud Storage que se usa para almacenar datos en etapa intermedia antes de cargarlos en BigQuery.
- SUBNET: Opcional Si no se especifica una subred, se selecciona la subred en la REGION especificada en la red
default
.Ejemplo:
projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME
- TEMPVIEW y SQL_QUERY: opcional. Puedes usar estos dos parámetros opcionales para aplicar una transformación de Spark SQL mientras cargas datos en BigQuery. TEMPVIEW es el nombre de la vista temporal y SQL_QUERY es la sentencia de consulta. TEMPVIEW y el nombre de la tabla en SQL_QUERY deben coincidir.
- SERVICE_ACCOUNT: Opcional Si no se proporciona, se usa la cuenta de servicio predeterminada de Compute Engine.
- PROPERTY y PROPERTY_VALUE: Opcional. Es una lista separada por comas de pares propiedad de Spark=
value
. - LABEL y LABEL_VALUE: Opcional. Es una lista separada por comas de pares
label
=value
. - LOG_LEVEL: Opcional Nivel de registro. Puede ser una de las siguientes opciones:
ALL
,DEBUG
,ERROR
,FATAL
,INFO
,OFF
,TRACE
oWARN
. Valor predeterminado:INFO
. -
KMS_KEY: Opcional La clave de Cloud Key Management Service que se usará para la encriptación. Si no se especifica una clave, los datos se encriptan en reposo con un Google-owned and Google-managed encryption key.
Ejemplo:
projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME
Método HTTP y URL:
POST https://dataproc.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/batches
Cuerpo JSON de la solicitud:
{ "environmentConfig":{ "executionConfig":{ "subnetworkUri":"SUBNET", "kmsKey": "KMS_KEY", "serviceAccount": "SERVICE_ACCOUNT" } }, "labels": { "LABEL": "LABEL_VALUE" }, "runtimeConfig": { "version": "1.2", "properties": { "PROPERTY": "PROPERTY_VALUE" } }, "sparkBatch":{ "mainClass":"com.google.cloud.dataproc.templates.main.DataProcTemplate", "args":[ "--template", "GCSTOBIGQUERY", "--templateProperty","log.level=LOG_LEVEL", "--templateProperty","project.id=PROJECT_ID", "--templateProperty","gcs.bigquery.input.location=CLOUD_STORAGE_PATH", "--templateProperty","gcs.bigquery.input.format=FORMAT", "--templateProperty","gcs.bigquery.output.dataset=DATASET", "--templateProperty","gcs.bigquery.output.table=TABLE", "--templateProperty","gcs.bigquery.temp.bucket.name=TEMP_BUCKET", "--templateProperty","gcs.bigquery.temp.table=TEMPVIEW", "--templateProperty","gcs.bigquery.temp.query=SQL_QUERY" ], "jarFileUris":[ "file:///usr/lib/spark/connector/spark-avro.jar", "gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar" ] } }
Para enviar tu solicitud, expande una de estas opciones:
Deberías recibir una respuesta JSON similar a la que se muestra a continuación:
{ "name": "projects/PROJECT_ID/regions/REGION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.dataproc.v1.BatchOperationMetadata", "batch": "projects/PROJECT_ID/locations/REGION/batches/BATCH_ID", "batchUuid": "de8af8d4-3599-4a7c-915c-798201ed1583", "createTime": "2023-02-24T03:31:03.440329Z", "operationType": "BATCH", "description": "Batch" } }