Pub/Sub to MongoDB with Python UDFs template

The Pub/Sub to MongoDB with Python UDFs template is a streaming pipeline that reads JSON-encoded messages from a Pub/Sub subscription and writes them to MongoDB as documents. If required, this pipeline supports additional transforms that can be included using a Python user-defined function (UDF).

If errors occur while processing records, the template writes them to a BigQuery table, along with the input message. For example, errors might occur due to schema mismatch, malformed JSON, or while executing transforms. Specify the table name in the deadletterTable parameter. If the table doesn't exist, the pipeline automatically creates it.

Pipeline requirements

  • The Pub/Sub Subscription must exist and the messages must be encoded in a valid JSON format.
  • The MongoDB cluster must exist and should be accessible from the Dataflow worker machines.

Template parameters

Parameter Description
inputSubscription Name of the Pub/Sub subscription. For example: projects/my-project-id/subscriptions/my-subscription-id
mongoDBUri Comma separated list of MongoDB servers. For example: 192.285.234.12:27017,192.287.123.11:27017
database Database in MongoDB to store the collection. For example: my-db.
collection Name of the collection inside MongoDB database. For example: my-collection.
deadletterTable BigQuery table that store messages due to failures (mismatched schema, malformed JSON etc). For example: project-id:dataset-name.table-name.
pythonExternalTextTransformGcsPath Optional: The Cloud Storage URI of the Python code file that defines the user-defined function (UDF) you want to use. For example, gs://my-bucket/my-udfs/my_file.py.
pythonExternalTextTransformFunctionName Optional: The name of the Python user-defined function (UDF) that you want to use.
batchSize Optional: Batch size used for batch insertion of documents into MongoDB. Default: 1000.
batchSizeBytes Optional: Batch size in bytes. Default: 5242880.
maxConnectionIdleTime Optional: Maximum idle time allowed in seconds before connection timeout occurs. Default: 60000.
sslEnabled Optional: Boolean value indicating whether connection to MongoDB is SSL enabled. Default: true.
ignoreSSLCertificate Optional: Boolean value indicating if SSL certificate should be ignored. Default: true.
withOrdered Optional: Boolean value enabling ordered bulk insertions into MongoDB. Default: true.
withSSLInvalidHostNameAllowed Optional: Boolean value indicating if invalid hostname is allowed for SSL connection. Default: true.

User-defined function

Optionally, you can extend this template by writing a user-defined function (UDF). The template calls the UDF for each input element. Element payloads are serialized as JSON strings. For more information, see Create user-defined functions for Dataflow templates.

Function specification

The UDF has the following specification:

  • Input: a single line from an input CSV file.
  • Output: a stringified JSON document to insert into MongoDB.

Run the template

Console

  1. Go to the Dataflow Create job from template page.
  2. Go to Create job from template
  3. In the Job name field, enter a unique job name.
  4. Optional: For Regional endpoint, select a value from the drop-down menu. The default region is us-central1.

    For a list of regions where you can run a Dataflow job, see Dataflow locations.

  5. From the Dataflow template drop-down menu, select the Pub/Sub to MongoDB with Python UDFs template.
  6. In the provided parameter fields, enter your parameter values.
  7. Click Run job.

gcloud

In your shell or terminal, run the template:

gcloud dataflow flex-template run JOB_NAME \
    --project=PROJECT_ID \
    --region=REGION_NAME \
    --template-file-gcs-location=gs://dataflow-templates-REGION_NAME/VERSION/flex/Cloud_PubSub_to_MongoDB_Xlang \
    --parameters \
inputSubscription=INPUT_SUBSCRIPTION,\
mongoDBUri=MONGODB_URI,\
database=DATABASE,
collection=COLLECTION,
deadletterTable=UNPROCESSED_TABLE
  

Replace the following:

  • PROJECT_ID: the Google Cloud project ID where you want to run the Dataflow job
  • REGION_NAME: the region where you want to deploy your Dataflow job—for example, us-central1
  • JOB_NAME: a unique job name of your choice
  • VERSION: the version of the template that you want to use

    You can use the following values:

  • INPUT_SUBSCRIPTION: the Pub/Sub subscription (for example, projects/my-project-id/subscriptions/my-subscription-id)
  • MONGODB_URI: the MongoDB server addresses (for example, 192.285.234.12:27017,192.287.123.11:27017)
  • DATABASE: the name of the MongoDB database (for example, users)
  • COLLECTION: the name of the MongoDB collection (for example, profiles)
  • UNPROCESSED_TABLE: the name of the BigQuery table (for example, your-project:your-dataset.your-table-name)

API

To run the template using the REST API, send an HTTP POST request. For more information on the API and its authorization scopes, see projects.templates.launch.

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/flexTemplates:launch
{
   "launch_parameter": {
      "jobName": "JOB_NAME",
      "parameters": {
          "inputSubscription": "INPUT_SUBSCRIPTION",
          "mongoDBUri": "MONGODB_URI",
          "database": "DATABASE",
          "collection": "COLLECTION",
          "deadletterTable": "UNPROCESSED_TABLE"
      },
      "containerSpecGcsPath": "gs://dataflow-templates-LOCATION/VERSION/flex/Cloud_PubSub_to_MongoDB_Xlang",
   }
}
  

Replace the following:

  • PROJECT_ID: the Google Cloud project ID where you want to run the Dataflow job
  • LOCATION: the region where you want to deploy your Dataflow job—for example, us-central1
  • JOB_NAME: a unique job name of your choice
  • VERSION: the version of the template that you want to use

    You can use the following values:

  • INPUT_SUBSCRIPTION: the Pub/Sub subscription (for example, projects/my-project-id/subscriptions/my-subscription-id)
  • MONGODB_URI: the MongoDB server addresses (for example, 192.285.234.12:27017,192.287.123.11:27017)
  • DATABASE: the name of the MongoDB database (for example, users)
  • COLLECTION: the name of the MongoDB collection (for example, profiles)
  • UNPROCESSED_TABLE: the name of the BigQuery table (for example, your-project:your-dataset.your-table-name)

What's next