Template Langganan Pub/Sub ke BigQuery

Template Langganan Pub/Sub ke BigQuery adalah pipeline streaming yang membaca pesan berformat JSON dari langganan Pub/Sub dan menulisnya ke tabel BigQuery. Anda dapat menggunakan template ini sebagai solusi cepat untuk memindahkan data Pub/Sub ke BigQuery. Template ini membaca pesan berformat JSON dari Pub/Sub dan mengonversinya menjadi elemen BigQuery.

Persyaratan pipeline

  • Bidang data pesan Pub/Sub harus menggunakan format JSON, yang dijelaskan dalam panduan JSON ini. Misalnya, pesan dengan nilai di kolom data yang diformat sebagai {"k1":"v1", "k2":"v2"} dapat dimasukkan ke tabel BigQuery dengan dua kolom, bernama k1 dan k2, dengan jenis data string.
  • Tabel output harus sudah ada sebelum menjalankan pipeline. Skema tabel harus cocok dengan objek JSON input.

Parameter template

Parameter yang diperlukan

  • outputTableSpec: Lokasi tabel output BigQuery, dalam format <PROJECT_ID>:<DATASET_NAME>.<TABLE_NAME>.
  • inputSubscription: Langganan input Pub/Sub yang akan dibaca, dalam format projects/<PROJECT_ID>/subscriptions/<SUBSCRIPTION>.

Parameter opsional

  • outputDeadletterTable: Tabel BigQuery yang akan digunakan untuk pesan yang gagal mencapai tabel output, dalam format <PROJECT_ID>:<DATASET_NAME>.<TABLE_NAME>. Jika tidak ada, tabel akan dibuat selama eksekusi pipeline. Jika tidak ditentukan, OUTPUT_TABLE_SPEC_error_records akan digunakan.
  • javascriptTextTransformGcsPath: URI Cloud Storage file .js yang menentukan fungsi yang ditentukan pengguna (UDF) JavaScript yang akan digunakan. Contoh, gs://my-bucket/my-udfs/my_file.js.
  • javascriptTextTransformFunctionName: Nama fungsi yang ditentukan pengguna (UDF) JavaScript yang akan digunakan. Misalnya, jika kode fungsi JavaScript Anda adalah myTransform(inJson) { /*...do stuff...*/ }, nama fungsinya adalah myTransform. Untuk contoh UDF JavaScript, lihat Contoh UDF (https://github.com/GoogleCloudPlatform/DataflowTemplates#udf-examples).
  • javascriptTextTransformReloadIntervalMinutes: Menentukan interval yang dapat digunakan pekerja untuk memeriksa perubahan UDF JavaScript guna memuat ulang file. Setelan defaultnya adalah: 0.

Fungsi yang ditentukan pengguna (UDF)

Secara opsional, Anda dapat memperluas template ini dengan menulis fungsi yang ditentukan pengguna (UDF). Template memanggil UDF untuk setiap elemen input. Payload elemen diserialisasi sebagai string JSON. Untuk informasi selengkapnya, lihat Membuat fungsi yang ditentukan pengguna untuk template Dataflow.

Spesifikasi fungsi

UDF memiliki spesifikasi berikut:

  • Input: kolom data pesan Pub/Sub, yang diserialisasi sebagai string JSON.
  • Output: string JSON yang cocok dengan skema tabel tujuan BigQuery.
  • Menjalankan template

    1. Buka halaman Create job from template Dataflow.
    2. Buka Buat tugas dari template
    3. Di kolom Nama tugas, masukkan nama tugas yang unik.
    4. Opsional: Untuk Endpoint regional, pilih nilai dari menu drop-down. Region defaultnya adalah us-central1.

      Untuk mengetahui daftar region tempat Anda dapat menjalankan tugas Dataflow, lihat Lokasi Dataflow.

    5. Dari menu drop-down Dataflow template, pilih the Pub/Sub Subscription to BigQuery template.
    6. Di kolom parameter yang disediakan, masukkan nilai parameter Anda.
    7. Opsional: Untuk beralih dari pemrosesan tepat satu kali ke mode streaming setidaknya sekali, pilih Setidaknya Sekali.
    8. Klik Run job.

    Di shell atau terminal, jalankan template:

    gcloud dataflow jobs run JOB_NAME \
        --gcs-location gs://dataflow-templates-REGION_NAME/VERSION/PubSub_Subscription_to_BigQuery \
        --region REGION_NAME \
        --staging-location STAGING_LOCATION \
        --parameters \
    inputSubscription=projects/PROJECT_ID/subscriptions/SUBSCRIPTION_NAME,\
    outputTableSpec=PROJECT_ID:DATASET.TABLE_NAME,\
    outputDeadletterTable=PROJECT_ID:DATASET.TABLE_NAME

    Ganti kode berikut:

    • JOB_NAME: nama tugas unik pilihan Anda
    • REGION_NAME: region tempat Anda ingin men-deploy tugas Dataflow—misalnya, us-central1
    • VERSION: versi template yang ingin Anda gunakan

      Anda dapat menggunakan nilai berikut:

    • STAGING_LOCATION: lokasi untuk melakukan staging file lokal (misalnya, gs://your-bucket/staging)
    • SUBSCRIPTION_NAME: nama langganan Pub/Sub Anda
    • DATASET: set data BigQuery Anda
    • TABLE_NAME: nama tabel BigQuery Anda

    Untuk menjalankan template menggunakan REST API, kirim permintaan POST HTTP. Untuk mengetahui informasi selengkapnya tentang API dan cakupan otorisasinya, lihat projects.templates.launch.

    POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/templates:launch?gcsPath=gs://dataflow-templates-LOCATION/VERSION/PubSub_Subscription_to_BigQuery
    {
       "jobName": "JOB_NAME",
       "parameters": {
           "inputSubscription": "projects/PROJECT_ID/subscriptions/SUBSCRIPTION_NAME",
           "outputTableSpec": "PROJECT_ID:DATASET.TABLE_NAME"
       },
       "environment": {
           "ipConfiguration": "WORKER_IP_UNSPECIFIED",
           "additionalExperiments": []
       },
    }

    Ganti kode berikut:

    • PROJECT_ID: ID project Google Cloud tempat Anda ingin menjalankan tugas Dataflow
    • JOB_NAME: nama tugas unik pilihan Anda
    • LOCATION: region tempat Anda ingin men-deploy tugas Dataflow—misalnya, us-central1
    • VERSION: versi template yang ingin Anda gunakan

      Anda dapat menggunakan nilai berikut:

    • STAGING_LOCATION: lokasi untuk melakukan staging file lokal (misalnya, gs://your-bucket/staging)
    • SUBSCRIPTION_NAME: nama langganan Pub/Sub Anda
    • DATASET: set data BigQuery Anda
    • TABLE_NAME: nama tabel BigQuery Anda
    Java
    /*
     * Copyright (C) 2018 Google LLC
     *
     * Licensed under the Apache License, Version 2.0 (the "License"); you may not
     * use this file except in compliance with the License. You may obtain a copy of
     * the License at
     *
     *   http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
     * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
     * License for the specific language governing permissions and limitations under
     * the License.
     */
    package com.google.cloud.teleport.templates;
    
    import static com.google.cloud.teleport.templates.TextToBigQueryStreaming.wrapBigQueryInsertError;
    
    import com.google.api.services.bigquery.model.TableRow;
    import com.google.cloud.teleport.coders.FailsafeElementCoder;
    import com.google.cloud.teleport.metadata.Template;
    import com.google.cloud.teleport.metadata.TemplateCategory;
    import com.google.cloud.teleport.metadata.TemplateCreationParameter;
    import com.google.cloud.teleport.metadata.TemplateParameter;
    import com.google.cloud.teleport.templates.PubSubToBigQuery.Options;
    import com.google.cloud.teleport.templates.common.BigQueryConverters.FailsafeJsonToTableRow;
    import com.google.cloud.teleport.templates.common.ErrorConverters;
    import com.google.cloud.teleport.templates.common.JavascriptTextTransformer.FailsafeJavascriptUdf;
    import com.google.cloud.teleport.templates.common.JavascriptTextTransformer.JavascriptTextTransformerOptions;
    import com.google.cloud.teleport.util.DualInputNestedValueProvider;
    import com.google.cloud.teleport.util.DualInputNestedValueProvider.TranslatorInput;
    import com.google.cloud.teleport.util.ResourceUtils;
    import com.google.cloud.teleport.util.ValueProviderUtils;
    import com.google.cloud.teleport.values.FailsafeElement;
    import com.google.common.collect.ImmutableList;
    import java.nio.charset.StandardCharsets;
    import org.apache.beam.sdk.Pipeline;
    import org.apache.beam.sdk.PipelineResult;
    import org.apache.beam.sdk.coders.CoderRegistry;
    import org.apache.beam.sdk.coders.StringUtf8Coder;
    import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO;
    import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO.Write.CreateDisposition;
    import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO.Write.WriteDisposition;
    import org.apache.beam.sdk.io.gcp.bigquery.BigQueryInsertError;
    import org.apache.beam.sdk.io.gcp.bigquery.InsertRetryPolicy;
    import org.apache.beam.sdk.io.gcp.bigquery.WriteResult;
    import org.apache.beam.sdk.io.gcp.pubsub.PubsubIO;
    import org.apache.beam.sdk.io.gcp.pubsub.PubsubMessage;
    import org.apache.beam.sdk.io.gcp.pubsub.PubsubMessageWithAttributesCoder;
    import org.apache.beam.sdk.options.Default;
    import org.apache.beam.sdk.options.Description;
    import org.apache.beam.sdk.options.PipelineOptions;
    import org.apache.beam.sdk.options.PipelineOptionsFactory;
    import org.apache.beam.sdk.options.ValueProvider;
    import org.apache.beam.sdk.transforms.DoFn;
    import org.apache.beam.sdk.transforms.Flatten;
    import org.apache.beam.sdk.transforms.MapElements;
    import org.apache.beam.sdk.transforms.PTransform;
    import org.apache.beam.sdk.transforms.ParDo;
    import org.apache.beam.sdk.transforms.SerializableFunction;
    import org.apache.beam.sdk.values.PCollection;
    import org.apache.beam.sdk.values.PCollectionList;
    import org.apache.beam.sdk.values.PCollectionTuple;
    import org.apache.beam.sdk.values.TupleTag;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    /**
     * The {@link PubSubToBigQuery} pipeline is a streaming pipeline which ingests data in JSON format
     * from Cloud Pub/Sub, executes a UDF, and outputs the resulting records to BigQuery. Any errors
     * which occur in the transformation of the data or execution of the UDF will be output to a
     * separate errors table in BigQuery. The errors table will be created if it does not exist prior to
     * execution. Both output and error tables are specified by the user as template parameters.
     *
     * <p><b>Pipeline Requirements</b>
     *
     * <ul>
     *   <li>The Pub/Sub topic exists.
     *   <li>The BigQuery output table exists.
     * </ul>
     *
     * <p>Check out <a
     * href="https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/main/v1/README_PubSub_Subscription_to_BigQuery.md">README
     * for Subscription</a> or <a
     * href="https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/main/v1/README_PubSub_to_BigQuery.md">README
     * for Topic</a> for instructions on how to use or modify this template.
     */
    @Template(
        name = "PubSub_Subscription_to_BigQuery",
        category = TemplateCategory.STREAMING,
        displayName = "Pub/Sub Subscription to BigQuery",
        description =
            "The Pub/Sub Subscription to BigQuery template is a streaming pipeline that reads JSON-formatted messages from a Pub/Sub subscription and writes them to a BigQuery table. "
                + "You can use the template as a quick solution to move Pub/Sub data to BigQuery. "
                + "The template reads JSON-formatted messages from Pub/Sub and converts them to BigQuery elements.",
        optionsClass = Options.class,
        skipOptions = "inputTopic",
        documentation =
            "https://cloud.google.com/dataflow/docs/guides/templates/provided/pubsub-subscription-to-bigquery",
        contactInformation = "https://cloud.google.com/support",
        requirements = {
          "The <a href=\"https://cloud.google.com/pubsub/docs/reference/rest/v1/PubsubMessage\">`data` field</a> of Pub/Sub messages must use the JSON format, described in this <a href=\"https://developers.google.com/api-client-library/java/google-http-java-client/json\">JSON guide</a>. For example, messages with values in the `data` field formatted as `{\"k1\":\"v1\", \"k2\":\"v2\"}` can be inserted into a BigQuery table with two columns, named `k1` and `k2`, with a string data type.",
          "The output table must exist prior to running the pipeline. The table schema must match the input JSON objects."
        },
        streaming = true,
        supportsAtLeastOnce = true,
        supportsExactlyOnce = true)
    @Template(
        name = "PubSub_to_BigQuery",
        category = TemplateCategory.STREAMING,
        displayName = "Pub/Sub Topic to BigQuery",
        description =
            "The Pub/Sub Topic to BigQuery template is a streaming pipeline that reads JSON-formatted messages from a Pub/Sub topic and writes them to a BigQuery table. "
                + "You can use the template as a quick solution to move Pub/Sub data to BigQuery. "
                + "The template reads JSON-formatted messages from Pub/Sub and converts them to BigQuery elements.",
        optionsClass = Options.class,
        skipOptions = "inputSubscription",
        documentation =
            "https://cloud.google.com/dataflow/docs/guides/templates/provided/pubsub-to-bigquery",
        contactInformation = "https://cloud.google.com/support",
        requirements = {
          "The <a href=\"https://cloud.google.com/pubsub/docs/reference/rest/v1/PubsubMessage\">`data` field</a> of Pub/Sub messages must use the JSON format, described in this <a href=\"https://developers.google.com/api-client-library/java/google-http-java-client/json\">JSON guide</a>. For example, messages with values in the `data` field formatted as `{\"k1\":\"v1\", \"k2\":\"v2\"}` can be inserted into a BigQuery table with two columns, named `k1` and `k2`, with a string data type.",
          "The output table must exist prior to running the pipeline. The table schema must match the input JSON objects."
        },
        hidden = true,
        streaming = true,
        supportsAtLeastOnce = true)
    public class PubSubToBigQuery {
    
      /** The log to output status messages to. */
      private static final Logger LOG = LoggerFactory.getLogger(PubSubToBigQuery.class);
    
      /** The tag for the main output for the UDF. */
      public static final TupleTag<FailsafeElement<PubsubMessage, String>> UDF_OUT =
          new TupleTag<FailsafeElement<PubsubMessage, String>>() {};
    
      /** The tag for the main output of the json transformation. */
      public static final TupleTag<TableRow> TRANSFORM_OUT = new TupleTag<TableRow>() {};
    
      /** The tag for the dead-letter output of the udf. */
      public static final TupleTag<FailsafeElement<PubsubMessage, String>> UDF_DEADLETTER_OUT =
          new TupleTag<FailsafeElement<PubsubMessage, String>>() {};
    
      /** The tag for the dead-letter output of the json to table row transform. */
      public static final TupleTag<FailsafeElement<PubsubMessage, String>> TRANSFORM_DEADLETTER_OUT =
          new TupleTag<FailsafeElement<PubsubMessage, String>>() {};
    
      /** The default suffix for error tables if dead letter table is not specified. */
      public static final String DEFAULT_DEADLETTER_TABLE_SUFFIX = "_error_records";
    
      /** Pubsub message/string coder for pipeline. */
      public static final FailsafeElementCoder<PubsubMessage, String> CODER =
          FailsafeElementCoder.of(PubsubMessageWithAttributesCoder.of(), StringUtf8Coder.of());
    
      /** String/String Coder for FailsafeElement. */
      public static final FailsafeElementCoder<String, String> FAILSAFE_ELEMENT_CODER =
          FailsafeElementCoder.of(StringUtf8Coder.of(), StringUtf8Coder.of());
    
      /**
       * The {@link Options} class provides the custom execution options passed by the executor at the
       * command-line.
       */
      public interface Options extends PipelineOptions, JavascriptTextTransformerOptions {
        @TemplateParameter.BigQueryTable(
            order = 1,
            description = "BigQuery output table",
            helpText =
                "The BigQuery output table location, in the format `<PROJECT_ID>:<DATASET_NAME>.<TABLE_NAME>`")
        ValueProvider<String> getOutputTableSpec();
    
        void setOutputTableSpec(ValueProvider<String> value);
    
        @TemplateParameter.PubsubTopic(
            order = 2,
            description = "Input Pub/Sub topic",
            helpText = "The Pub/Sub topic to read the input from.")
        ValueProvider<String> getInputTopic();
    
        void setInputTopic(ValueProvider<String> value);
    
        @TemplateParameter.PubsubSubscription(
            order = 3,
            description = "Pub/Sub input subscription",
            helpText =
                "The Pub/Sub input subscription to read from, in the format `projects/<PROJECT_ID>/subscriptions/<SUBSCRIPTION>`.")
        ValueProvider<String> getInputSubscription();
    
        void setInputSubscription(ValueProvider<String> value);
    
        @TemplateCreationParameter(template = "PubSub_to_BigQuery", value = "false")
        @TemplateCreationParameter(template = "PubSub_Subscription_to_BigQuery", value = "true")
        @Description(
            "This determines whether the template reads from a Pub/sub subscription or a topic")
        @Default.Boolean(false)
        Boolean getUseSubscription();
    
        void setUseSubscription(Boolean value);
    
        @TemplateParameter.BigQueryTable(
            order = 5,
            optional = true,
            description =
                "Table for messages failed to reach the output table (i.e., Deadletter table)",
            helpText =
                "The BigQuery table to use for messages that fail to reach the output table, in the format of `<PROJECT_ID>:<DATASET_NAME>.<TABLE_NAME>`. If the table doesn't exist, it is created during pipeline execution. If not specified, `OUTPUT_TABLE_SPEC_error_records` is used.")
        ValueProvider<String> getOutputDeadletterTable();
    
        void setOutputDeadletterTable(ValueProvider<String> value);
      }
    
      /**
       * The main entry-point for pipeline execution. This method will start the pipeline but will not
       * wait for it's execution to finish. If blocking execution is required, use the {@link
       * PubSubToBigQuery#run(Options)} method to start the pipeline and invoke {@code
       * result.waitUntilFinish()} on the {@link PipelineResult}.
       *
       * @param args The command-line args passed by the executor.
       */
      public static void main(String[] args) {
        Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
    
        run(options);
      }
    
      /**
       * Runs the pipeline to completion with the specified options. This method does not wait until the
       * pipeline is finished before returning. Invoke {@code result.waitUntilFinish()} on the result
       * object to block until the pipeline is finished running if blocking programmatic execution is
       * required.
       *
       * @param options The execution options.
       * @return The pipeline result.
       */
      public static PipelineResult run(Options options) {
    
        Pipeline pipeline = Pipeline.create(options);
    
        CoderRegistry coderRegistry = pipeline.getCoderRegistry();
        coderRegistry.registerCoderForType(CODER.getEncodedTypeDescriptor(), CODER);
    
        /*
         * Steps:
         *  1) Read messages in from Pub/Sub
         *  2) Transform the PubsubMessages into TableRows
         *     - Transform message payload via UDF
         *     - Convert UDF result to TableRow objects
         *  3) Write successful records out to BigQuery
         *  4) Write failed records out to BigQuery
         */
    
        /*
         * Step #1: Read messages in from Pub/Sub
         * Either from a Subscription or Topic
         */
    
        PCollection<PubsubMessage> messages = null;
        if (options.getUseSubscription()) {
          messages =
              pipeline.apply(
                  "ReadPubSubSubscription",
                  PubsubIO.readMessagesWithAttributes()
                      .fromSubscription(options.getInputSubscription()));
        } else {
          messages =
              pipeline.apply(
                  "ReadPubSubTopic",
                  PubsubIO.readMessagesWithAttributes().fromTopic(options.getInputTopic()));
        }
    
        PCollectionTuple convertedTableRows =
            messages
                /*
                 * Step #2: Transform the PubsubMessages into TableRows
                 */
                .apply("ConvertMessageToTableRow", new PubsubMessageToTableRow(options));
    
        /*
         * Step #3: Write the successful records out to BigQuery
         */
        WriteResult writeResult =
            convertedTableRows
                .get(TRANSFORM_OUT)
                .apply(
                    "WriteSuccessfulRecords",
                    BigQueryIO.writeTableRows()
                        .withoutValidation()
                        .withCreateDisposition(CreateDisposition.CREATE_NEVER)
                        .withWriteDisposition(WriteDisposition.WRITE_APPEND)
                        .withExtendedErrorInfo()
                        .withMethod(BigQueryIO.Write.Method.STREAMING_INSERTS)
                        .withFailedInsertRetryPolicy(InsertRetryPolicy.retryTransientErrors())
                        .to(options.getOutputTableSpec()));
    
        /*
         * Step 3 Contd.
         * Elements that failed inserts into BigQuery are extracted and converted to FailsafeElement
         */
        PCollection<FailsafeElement<String, String>> failedInserts =
            writeResult
                .getFailedInsertsWithErr()
                .apply(
                    "WrapInsertionErrors",
                    MapElements.into(FAILSAFE_ELEMENT_CODER.getEncodedTypeDescriptor())
                        .via((BigQueryInsertError e) -> wrapBigQueryInsertError(e)))
                .setCoder(FAILSAFE_ELEMENT_CODER);
    
        /*
         * Step #4: Write records that failed table row transformation
         * or conversion out to BigQuery deadletter table.
         */
        PCollectionList.of(
                ImmutableList.of(
                    convertedTableRows.get(UDF_DEADLETTER_OUT),
                    convertedTableRows.get(TRANSFORM_DEADLETTER_OUT)))
            .apply("Flatten", Flatten.pCollections())
            .apply(
                "WriteFailedRecords",
                ErrorConverters.WritePubsubMessageErrors.newBuilder()
                    .setErrorRecordsTable(
                        ValueProviderUtils.maybeUseDefaultDeadletterTable(
                            options.getOutputDeadletterTable(),
                            options.getOutputTableSpec(),
                            DEFAULT_DEADLETTER_TABLE_SUFFIX))
                    .setErrorRecordsTableSchema(ResourceUtils.getDeadletterTableSchemaJson())
                    .build());
    
        // 5) Insert records that failed insert into deadletter table
        failedInserts.apply(
            "WriteFailedRecords",
            ErrorConverters.WriteStringMessageErrors.newBuilder()
                .setErrorRecordsTable(
                    ValueProviderUtils.maybeUseDefaultDeadletterTable(
                        options.getOutputDeadletterTable(),
                        options.getOutputTableSpec(),
                        DEFAULT_DEADLETTER_TABLE_SUFFIX))
                .setErrorRecordsTableSchema(ResourceUtils.getDeadletterTableSchemaJson())
                .build());
    
        return pipeline.run();
      }
    
      /**
       * If deadletterTable is available, it is returned as is, otherwise outputTableSpec +
       * defaultDeadLetterTableSuffix is returned instead.
       */
      private static ValueProvider<String> maybeUseDefaultDeadletterTable(
          ValueProvider<String> deadletterTable,
          ValueProvider<String> outputTableSpec,
          String defaultDeadLetterTableSuffix) {
        return DualInputNestedValueProvider.of(
            deadletterTable,
            outputTableSpec,
            new SerializableFunction<TranslatorInput<String, String>, String>() {
              @Override
              public String apply(TranslatorInput<String, String> input) {
                String userProvidedTable = input.getX();
                String outputTableSpec = input.getY();
                if (userProvidedTable == null) {
                  return outputTableSpec + defaultDeadLetterTableSuffix;
                }
                return userProvidedTable;
              }
            });
      }
    
      /**
       * The {@link PubsubMessageToTableRow} class is a {@link PTransform} which transforms incoming
       * {@link PubsubMessage} objects into {@link TableRow} objects for insertion into BigQuery while
       * applying an optional UDF to the input. The executions of the UDF and transformation to {@link
       * TableRow} objects is done in a fail-safe way by wrapping the element with it's original payload
       * inside the {@link FailsafeElement} class. The {@link PubsubMessageToTableRow} transform will
       * output a {@link PCollectionTuple} which contains all output and dead-letter {@link
       * PCollection}.
       *
       * <p>The {@link PCollectionTuple} output will contain the following {@link PCollection}:
       *
       * <ul>
       *   <li>{@link PubSubToBigQuery#UDF_OUT} - Contains all {@link FailsafeElement} records
       *       successfully processed by the optional UDF.
       *   <li>{@link PubSubToBigQuery#UDF_DEADLETTER_OUT} - Contains all {@link FailsafeElement}
       *       records which failed processing during the UDF execution.
       *   <li>{@link PubSubToBigQuery#TRANSFORM_OUT} - Contains all records successfully converted from
       *       JSON to {@link TableRow} objects.
       *   <li>{@link PubSubToBigQuery#TRANSFORM_DEADLETTER_OUT} - Contains all {@link FailsafeElement}
       *       records which couldn't be converted to table rows.
       * </ul>
       */
      static class PubsubMessageToTableRow
          extends PTransform<PCollection<PubsubMessage>, PCollectionTuple> {
    
        private final Options options;
    
        PubsubMessageToTableRow(Options options) {
          this.options = options;
        }
    
        @Override
        public PCollectionTuple expand(PCollection<PubsubMessage> input) {
    
          PCollectionTuple udfOut =
              input
                  // Map the incoming messages into FailsafeElements so we can recover from failures
                  // across multiple transforms.
                  .apply("MapToRecord", ParDo.of(new PubsubMessageToFailsafeElementFn()))
                  .apply(
                      "InvokeUDF",
                      FailsafeJavascriptUdf.<PubsubMessage>newBuilder()
                          .setFileSystemPath(options.getJavascriptTextTransformGcsPath())
                          .setFunctionName(options.getJavascriptTextTransformFunctionName())
                          .setReloadIntervalMinutes(
                              options.getJavascriptTextTransformReloadIntervalMinutes())
                          .setSuccessTag(UDF_OUT)
                          .setFailureTag(UDF_DEADLETTER_OUT)
                          .build());
    
          // Convert the records which were successfully processed by the UDF into TableRow objects.
          PCollectionTuple jsonToTableRowOut =
              udfOut
                  .get(UDF_OUT)
                  .apply(
                      "JsonToTableRow",
                      FailsafeJsonToTableRow.<PubsubMessage>newBuilder()
                          .setSuccessTag(TRANSFORM_OUT)
                          .setFailureTag(TRANSFORM_DEADLETTER_OUT)
                          .build());
    
          // Re-wrap the PCollections so we can return a single PCollectionTuple
          return PCollectionTuple.of(UDF_OUT, udfOut.get(UDF_OUT))
              .and(UDF_DEADLETTER_OUT, udfOut.get(UDF_DEADLETTER_OUT))
              .and(TRANSFORM_OUT, jsonToTableRowOut.get(TRANSFORM_OUT))
              .and(TRANSFORM_DEADLETTER_OUT, jsonToTableRowOut.get(TRANSFORM_DEADLETTER_OUT));
        }
      }
    
      /**
       * The {@link PubsubMessageToFailsafeElementFn} wraps an incoming {@link PubsubMessage} with the
       * {@link FailsafeElement} class so errors can be recovered from and the original message can be
       * output to a error records table.
       */
      static class PubsubMessageToFailsafeElementFn
          extends DoFn<PubsubMessage, FailsafeElement<PubsubMessage, String>> {
        @ProcessElement
        public void processElement(ProcessContext context) {
          PubsubMessage message = context.element();
          context.output(
              FailsafeElement.of(message, new String(message.getPayload(), StandardCharsets.UTF_8)));
        }
      }
    }
    

    Langkah berikutnya