Template Cloud Storage Parquet ke Bigtable

Template Cloud Storage Parquet ke Bigtable adalah pipeline yang membaca data dari file Parquet di bucket Cloud Storage dan menulis data ke tabel Bigtable. Anda dapat menggunakan template untuk menyalin data dari Cloud Storage ke Bigtable.

Persyaratan pipeline

  • Tabel Bigtable harus ada dan memiliki grup kolom yang sama seperti yang diekspor dalam file Parquet.
  • File Parquet input harus ada di bucket Cloud Storage sebelum menjalankan pipeline.
  • Bigtable mengharapkan skema tertentu dari file Parquet input.

Parameter template

Parameter yang diperlukan

  • bigtableProjectId: ID project Google Cloud yang terkait dengan instance Bigtable.
  • bigtableInstanceId: ID instance Cloud Bigtable yang berisi tabel.
  • bigtableTableId: ID tabel Bigtable yang akan diimpor.
  • inputFilePattern: Jalur Cloud Storage dengan file yang berisi data. Contoh, gs://your-bucket/your-files/*.parquet.

Parameter opsional

  • splitLargeRows: Flag untuk mengaktifkan pemisahan baris besar menjadi beberapa permintaan MutateRows. Perhatikan bahwa saat baris besar dibagi di antara beberapa panggilan API, update pada baris tersebut tidak bersifat atomik.

Menjalankan template

  1. Buka halaman Create job from template Dataflow.
  2. Buka Buat tugas dari template
  3. Di kolom Nama tugas, masukkan nama tugas yang unik.
  4. Opsional: Untuk Endpoint regional, pilih nilai dari menu drop-down. Region defaultnya adalah us-central1.

    Untuk mengetahui daftar region tempat Anda dapat menjalankan tugas Dataflow, lihat Lokasi Dataflow.

  5. Dari menu drop-down Dataflow template, pilih the Parquet Files on Cloud Storage to Cloud Bigtable template.
  6. Di kolom parameter yang disediakan, masukkan nilai parameter Anda.
  7. Klik Run job.

Di shell atau terminal, jalankan template:

gcloud dataflow jobs run JOB_NAME \
    --gcs-location gs://dataflow-templates-REGION_NAME/VERSION/GCS_Parquet_to_Cloud_Bigtable \
    --region REGION_NAME \
    --parameters \
bigtableProjectId=BIGTABLE_PROJECT_ID,\
bigtableInstanceId=INSTANCE_ID,\
bigtableTableId=TABLE_ID,\
inputFilePattern=INPUT_FILE_PATTERN

Ganti kode berikut:

  • JOB_NAME: nama tugas unik pilihan Anda
  • VERSION: versi template yang ingin Anda gunakan

    Anda dapat menggunakan nilai berikut:

  • REGION_NAME: region tempat Anda ingin men-deploy tugas Dataflow—misalnya, us-central1
  • BIGTABLE_PROJECT_ID: ID Google Cloud project instance Bigtable tempat Anda ingin membaca data
  • INSTANCE_ID: ID instance Bigtable yang berisi tabel
  • TABLE_ID: ID tabel Bigtable yang akan diekspor
  • INPUT_FILE_PATTERN: pola jalur Cloud Storage tempat data berada, misalnya, gs://mybucket/somefolder/prefix*

Untuk menjalankan template menggunakan REST API, kirim permintaan POST HTTP. Untuk mengetahui informasi selengkapnya tentang API dan cakupan otorisasinya, lihat projects.templates.launch.

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/templates:launch?gcsPath=gs://dataflow-templates-LOCATION/VERSION/GCS_Parquet_to_Cloud_Bigtable
{
   "jobName": "JOB_NAME",
   "parameters": {
       "bigtableProjectId": "BIGTABLE_PROJECT_ID",
       "bigtableInstanceId": "INSTANCE_ID",
       "bigtableTableId": "TABLE_ID",
       "inputFilePattern": "INPUT_FILE_PATTERN",
   },
   "environment": { "zone": "us-central1-f" }
}

Ganti kode berikut:

  • PROJECT_ID: ID project Google Cloud tempat Anda ingin menjalankan tugas Dataflow
  • JOB_NAME: nama tugas unik pilihan Anda
  • VERSION: versi template yang ingin Anda gunakan

    Anda dapat menggunakan nilai berikut:

  • LOCATION: region tempat Anda ingin men-deploy tugas Dataflow—misalnya, us-central1
  • BIGTABLE_PROJECT_ID: ID Google Cloud project instance Bigtable tempat Anda ingin membaca data
  • INSTANCE_ID: ID instance Bigtable yang berisi tabel
  • TABLE_ID: ID tabel Bigtable yang akan diekspor
  • INPUT_FILE_PATTERN: pola jalur Cloud Storage tempat data berada, misalnya, gs://mybucket/somefolder/prefix*
Java
/*
 * Copyright (C) 2019 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */
package com.google.cloud.teleport.bigtable;

import static com.google.cloud.teleport.bigtable.AvroToBigtable.toByteString;

import com.google.bigtable.v2.Mutation;
import com.google.cloud.teleport.bigtable.ParquetToBigtable.Options;
import com.google.cloud.teleport.metadata.Template;
import com.google.cloud.teleport.metadata.TemplateCategory;
import com.google.cloud.teleport.metadata.TemplateParameter;
import com.google.protobuf.ByteString;
import java.nio.ByteBuffer;
import java.util.List;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;
import org.apache.beam.runners.direct.DirectRunner;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.PipelineResult;
import org.apache.beam.sdk.io.gcp.bigtable.BigtableIO;
import org.apache.beam.sdk.io.parquet.ParquetIO;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.ValueProvider;
import org.apache.beam.sdk.options.ValueProvider.StaticValueProvider;
import org.apache.beam.sdk.transforms.DoFn;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.values.KV;
import org.apache.beam.vendor.guava.v32_1_2_jre.com.google.common.base.MoreObjects;
import org.apache.beam.vendor.guava.v32_1_2_jre.com.google.common.collect.ImmutableList;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * The {@link ParquetToBigtable} pipeline imports data from Parquet files in GCS to a Cloud Bigtable
 * table. The Cloud Bigtable table must be created before running the pipeline and must have a
 * compatible table schema. For example, if {@link BigtableCell} from the Parquet files has a
 * 'family' of "f1", the Bigtable table should have a column family of "f1".
 *
 * <p>Check out <a
 * href="https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/main/v1/README_GCS_Parquet_to_Cloud_Bigtable.md">README</a>
 * for instructions on how to use or modify this template.
 */
@Template(
    name = "GCS_Parquet_to_Cloud_Bigtable",
    category = TemplateCategory.BATCH,
    displayName = "Parquet Files on Cloud Storage to Cloud Bigtable",
    description =
        "The Cloud Storage Parquet to Bigtable template is a pipeline that reads data from Parquet files in a Cloud Storage bucket and writes the data to a Bigtable table. "
            + "You can use the template to copy data from Cloud Storage to Bigtable.",
    optionsClass = Options.class,
    documentation =
        "https://cloud.google.com/dataflow/docs/guides/templates/provided/parquet-to-bigtable",
    contactInformation = "https://cloud.google.com/support",
    requirements = {
      "The Bigtable table must exist and have the same column families as exported in the Parquet files.",
      "The input Parquet files must exist in a Cloud Storage bucket before running the pipeline.",
      "Bigtable expects a specific <a href=\"https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/main/v1/src/main/resources/schema/avro/bigtable.avsc\">schema</a> from the input Parquet files."
    })
public class ParquetToBigtable {
  private static final Logger LOG = LoggerFactory.getLogger(ParquetToBigtable.class);

  /** Maximum number of mutations allowed per row by Cloud bigtable. */
  private static final int MAX_MUTATIONS_PER_ROW = 100000;

  private static final Boolean DEFAULT_SPLIT_LARGE_ROWS = false;

  /** Options for the import pipeline. */
  public interface Options extends PipelineOptions {
    @TemplateParameter.ProjectId(
        order = 1,
        groupName = "Target",
        description = "Project ID",
        helpText = "The Google Cloud project ID associated with the Bigtable instance.")
    ValueProvider<String> getBigtableProjectId();

    @SuppressWarnings("unused")
    void setBigtableProjectId(ValueProvider<String> projectId);

    @TemplateParameter.Text(
        order = 2,
        groupName = "Target",
        regexes = {"[a-z][a-z0-9\\-]+[a-z0-9]"},
        description = "Instance ID",
        helpText = "The ID of the Cloud Bigtable instance that contains the table")
    ValueProvider<String> getBigtableInstanceId();

    @SuppressWarnings("unused")
    void setBigtableInstanceId(ValueProvider<String> instanceId);

    @TemplateParameter.Text(
        order = 3,
        groupName = "Target",
        regexes = {"[_a-zA-Z0-9][-_.a-zA-Z0-9]*"},
        description = "Table ID",
        helpText = "The ID of the Bigtable table to import.")
    ValueProvider<String> getBigtableTableId();

    @SuppressWarnings("unused")
    void setBigtableTableId(ValueProvider<String> tableId);

    @TemplateParameter.GcsReadFile(
        order = 4,
        groupName = "Source",
        description = "Input Cloud Storage File(s)",
        helpText = "The Cloud Storage path with the files that contain the data.",
        example = "gs://your-bucket/your-files/*.parquet")
    ValueProvider<String> getInputFilePattern();

    @SuppressWarnings("unused")
    void setInputFilePattern(ValueProvider<String> inputFilePattern);

    @TemplateParameter.Boolean(
        order = 5,
        groupName = "Target",
        optional = true,
        description = "If true, large rows will be split into multiple MutateRows requests",
        helpText =
            "The flag for enabling splitting of large rows into multiple MutateRows requests. Note that when a large row is split between multiple API calls, the updates to the row are not atomic.")
    ValueProvider<Boolean> getSplitLargeRows();

    void setSplitLargeRows(ValueProvider<Boolean> splitLargeRows);
  }

  /**
   * Runs a pipeline to import Parquet files in GCS to a Cloud Bigtable table.
   *
   * @param args arguments to the pipeline
   */
  public static void main(String[] args) {
    Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);

    PipelineResult result = run(options);
  }

  public static PipelineResult run(Options options) {
    Pipeline pipeline = Pipeline.create(PipelineUtils.tweakPipelineOptions(options));

    BigtableIO.Write write =
        BigtableIO.write()
            .withProjectId(options.getBigtableProjectId())
            .withInstanceId(options.getBigtableInstanceId())
            .withTableId(options.getBigtableTableId());

    /**
     * Steps: 1) Read records from Parquet File. 2) Convert a GenericRecord to a
     * KV<ByteString,Iterable<Mutation>>. 3) Write KV to Bigtable's table.
     */
    pipeline
        .apply(
            "Read from Parquet",
            ParquetIO.read(BigtableRow.getClassSchema()).from(options.getInputFilePattern()))
        .apply(
            "Transform to Bigtable",
            ParDo.of(
                ParquetToBigtableFn.createWithSplitLargeRows(
                    options.getSplitLargeRows(), MAX_MUTATIONS_PER_ROW)))
        .apply("Write to Bigtable", write);

    return pipeline.run();
  }

  static class ParquetToBigtableFn extends DoFn<GenericRecord, KV<ByteString, Iterable<Mutation>>> {

    private final ValueProvider<Boolean> splitLargeRowsFlag;
    private Boolean splitLargeRows;
    private final int maxMutationsPerRow;

    public static ParquetToBigtableFn create() {
      return new ParquetToBigtableFn(StaticValueProvider.of(false), MAX_MUTATIONS_PER_ROW);
    }

    public static ParquetToBigtableFn createWithSplitLargeRows(
        ValueProvider<Boolean> splitLargeRowsFlag, int maxMutationsPerRequest) {
      return new ParquetToBigtableFn(splitLargeRowsFlag, maxMutationsPerRequest);
    }

    @Setup
    public void setup() {
      if (splitLargeRowsFlag != null) {
        splitLargeRows = splitLargeRowsFlag.get();
      }
      splitLargeRows = MoreObjects.firstNonNull(splitLargeRows, DEFAULT_SPLIT_LARGE_ROWS);
      LOG.info("splitLargeRows set to: " + splitLargeRows);
    }

    private ParquetToBigtableFn(
        ValueProvider<Boolean> splitLargeRowsFlag, int maxMutationsPerRequest) {
      this.splitLargeRowsFlag = splitLargeRowsFlag;
      this.maxMutationsPerRow = maxMutationsPerRequest;
    }

    @ProcessElement
    public void processElement(ProcessContext ctx) {
      Class runner = ctx.getPipelineOptions().getRunner();
      ByteString key = toByteString((ByteBuffer) ctx.element().get(0));

      // BulkMutation doesn't split rows. Currently, if a single row contains more than 100,000
      // mutations, the service will fail the request.
      ImmutableList.Builder<Mutation> mutations = ImmutableList.builder();
      List<Object> cells = (List) ctx.element().get(1);
      int cellsProcessed = 0;
      for (Object element : cells) {
        Mutation.SetCell setCell = null;
        if (runner.isAssignableFrom(DirectRunner.class)) {
          setCell =
              Mutation.SetCell.newBuilder()
                  .setFamilyName(((GenericData.Record) element).get(0).toString())
                  .setColumnQualifier(
                      toByteString((ByteBuffer) ((GenericData.Record) element).get(1)))
                  .setTimestampMicros((Long) ((GenericData.Record) element).get(2))
                  .setValue(toByteString((ByteBuffer) ((GenericData.Record) element).get(3)))
                  .build();
        } else {
          BigtableCell bigtableCell = (BigtableCell) element;
          setCell =
              Mutation.SetCell.newBuilder()
                  .setFamilyName(bigtableCell.getFamily().toString())
                  .setColumnQualifier(toByteString(bigtableCell.getQualifier()))
                  .setTimestampMicros(bigtableCell.getTimestamp())
                  .setValue(toByteString(bigtableCell.getValue()))
                  .build();
        }
        mutations.add(Mutation.newBuilder().setSetCell(setCell).build());
        cellsProcessed++;

        if (this.splitLargeRows && cellsProcessed % maxMutationsPerRow == 0) {
          // Send a MutateRow request when we have accumulated max mutations per row.
          ctx.output(KV.of(key, mutations.build()));
          mutations = ImmutableList.builder();
        }
      }

      // Flush any remaining mutations.
      ImmutableList remainingMutations = mutations.build();
      if (!remainingMutations.isEmpty()) {
        ctx.output(KV.of(key, remainingMutations));
      }
    }
  }
}

Langkah berikutnya