Vorlage "Spanner-Änderungsstreams für BigQuery"

Die Vorlage „Spanner-Änderungsstreams für BigQuery“ ist eine Streamingpipeline, die Datenänderungsdatensätze von Spanner streamt und sie mithilfe von Dataflow Runner V2 in BigQuery-Tabellen schreibt.

Alle Spalten zum Beobachten von Änderungsstreams sind in jeder BigQuery-Tabellenzeile enthalten, unabhängig davon, ob sie durch eine Spanner-Transaktion geändert werden. Nicht beobachtete Spalten sind nicht in der BigQuery-Zeile enthalten. Alle Spanner-Änderungen, die kleiner als das Dataflow-Wasserzeichen sind, werden entweder erfolgreich auf die BigQuery-Tabellen angewendet oder in der Dead-Letter-Warteschlange zur Wiederholung gespeichert. BigQuery-Zeilen werden im Vergleich zur ursprünglichen Reihenfolge des Spanner Commit-Zeitstempels in der falschen Reihenfolge eingefügt.

Wenn die erforderlichen BigQuery-Tabellen nicht vorhanden sind, werden sie von der Pipeline erstellt. Andernfalls werden vorhandene BigQuery-Tabellen verwendet. Das Schema vorhandener BigQuery-Tabellen muss die entsprechenden nachverfolgten Spalten der Spanner-Tabellen und alle zusätzlichen Metadatenspalten enthalten, die nicht explizit von der Option ignoreFields ignoriert werden. Eine Beschreibung der Metadatenfelder finden Sie in der folgenden Liste. Jede neue BigQuery-Zeile enthält alle Spalten, die vom Änderungsstream aus der entsprechenden Zeile in Ihrer Spanner-Tabelle zum Zeitstempel des Änderungsdatensatzes beobachtet werden.

Die folgenden Metadatenfelder werden zu BigQuery-Tabellen hinzugefügt: Weitere Informationen zu diesen Feldern finden Sie unter Datenänderungsdatensätze in „Änderungsstream-Partitionen, -Datensätze und -Abfragen”.

Beachten Sie bei der Verwendung dieser Vorlage die folgenden Details:

  • Diese Vorlage überträgt keine Schemaänderungen von Spanner an BigQuery. Da die Schemaänderung in Spanner wahrscheinlich zu einer Unterbrechung der Pipeline führt, müssen Sie die Pipeline nach der Schemaänderung möglicherweise neu erstellen.
  • Bei den Werterfassungstypen OLD_AND_NEW_VALUES und NEW_VALUES muss die Vorlage, wenn der Datensatz eine UPDATE-Änderung enthält, einen veralteten Lesevorgang in Spanner zum Commit-Zeitstempel des Datensatzes durchführen, um die unveränderten, aber überwachten Spalten abzurufen. Prüfen Sie, ob Sie die „version_retention_period“ in Ihrer Datenbank richtig konfiguriert haben, um veraltete Daten lesen zu können. Für den Werterfassungstyp NEW_ROW ist die Vorlage effizienter, da der Datensatz zur Datenänderung die vollständige neue Zeile erfasst, einschließlich Spalten, die in UPDATE-Anfragen nicht aktualisiert werden, und die Vorlage keinen veralteten Lesevorgang ausführen muss.
  • Führen Sie den Dataflow-Job in derselben Region wie Ihre Spanner-Instanz oder BigQuery-Tabellen aus, um die Netzwerklatenz und die Netzwerktransportkosten zu minimieren. Wenn Sie Quellen und Senken sowie Speicherorte für Staging-Dateien und temporäre Dateien verwenden, die sich außerhalb der Region Ihres Jobs befinden, werden Ihre Daten möglicherweise regionenübergreifend gesendet. Weitere Informationen finden Sie unter Dataflow-Regionen.
  • Diese Vorlage unterstützt alle gültigen Spanner-Datentypen. Wenn der BigQuery-Typ jedoch genauer ist als der Spanner-Typ, kann während der Transformation ein Genauigkeitsverlust auftreten. Insbesondere:
    • Im Fall von JSON-Typen in Spanner wird die Reihenfolge der Mitglieder eines Objekts lexikografisch angeordnet. Es gibt jedoch keine Garantie dafür.
    • Spanner unterstützt den TIMESTAMP-Typ „Nanosekunden”, aber BigQuery unterstützt nur den TIMESTAMP-Typ „Mikrosekunden”.
  • Diese Vorlage unterstützt die Verwendung der BigQuery Storage Write API im „Genau einmal“-Modus ni ht.

Weitere Informationen zu Änderungsstreams, zum Erstellen von Dataflow-Pipelines für Änderungsstreams und Best Practices

Pipelineanforderungen

  • Die Spanner-Instanz muss vorhanden sein, bevor Sie die Pipeline ausführen.
  • Die Spanner-Datenbank muss vorhanden sein, bevor Sie die Pipeline ausführen.
  • Die Spanner-Metadateninstanz muss vorhanden sein, bevor Sie die Pipeline ausführen.
  • Die Spanner-Metadatendatenbank muss vorhanden sein, bevor Sie die Pipeline ausführen.
  • Der Spanner-Änderungsstream muss vorhanden sein, bevor Sie die Pipeline ausführen.
  • Das BigQuery-Dataset muss vorhanden sein, bevor Sie die Pipeline ausführen.

Vorlagenparameter

Erforderliche Parameter

  • spannerInstanceId : Die Spanner-Instanz, aus der Änderungsstreams gelesen werden sollen.
  • spannerDatabase : Die Spanner-Datenbank, aus der Änderungsstreams gelesen werden sollen.
  • spannerMetadataInstanceId : Die Spanner-Instanz, die für die Metadatentabelle des Connectors für Änderungsstreams verwendet werden soll.
  • spannerMetadataDatabase : Die Spanner-Datenbank, die für die Metadatentabelle des Connectors für Änderungsstreams verwendet werden soll.
  • spannerChangeStreamName : Der Name des Spanner-Änderungsstreams, aus dem gelesen werden soll.
  • bigQueryDataset: Das BigQuery-Dataset für die Ausgabe der Änderungsstreams.

Optionale Parameter

  • spannerProjectId : Das Projekt, aus dem Änderungsstreams gelesen werden. Dieser Wert ist auch das Projekt, in dem die Metadatentabelle des Änderungsstream-Connectors erstellt wird. Der Standardwert für diesen Parameter ist das Projekt, in dem die Dataflow-Pipeline ausgeführt wird.
  • spannerDatabaseRole : Die Spanner-Datenbankrolle, die beim Ausführen der Vorlage verwendet werden soll. Dieser Parameter ist nur erforderlich, wenn das IAM-Hauptkonto, das die Vorlage ausführt, ein Nutzer für die Zugriffssteuerung ist. Die Datenbankrolle muss die Berechtigung SELECT für den Änderungsstream und die Berechtigung EXECUTE für die Lesefunktion des Änderungsstreams haben. Weitere Informationen finden Sie unter „Detaillierte Zugriffssteuerung für Änderungsstreams“ (https://cloud.google.com/spanner/docs/fgac-change-streams).
  • spannerMetadataTableName : Der Name der zu verwendenden Connector-Metadatentabelle für Spanner-Änderungsstreams. Wenn nicht angegeben, wird während des Pipelineablaufs automatisch eine Metadatentabelle für Spanner-Änderungsstreams erstellt. Sie müssen diesen Parameter beim Aktualisieren einer vorhandenen Pipeline angeben. Geben Sie andernfalls diesen Parameter nicht an.
  • rpcPriority : Die Anfragepriorität für Spanner-Aufrufe. Der Wert muss einer der folgenden Werte sein: HIGH, MEDIUM oder LOW. Der Standardwert ist HIGH.
  • spannerHost : Der Cloud Spanner-Endpunkt, der in der Vorlage aufgerufen werden soll. Wird nur zum Testen verwendet. (Beispiel: https://batch-spanner.googleapis.com).
  • startTimestamp : Die Start-DateTime (https://datatracker.ietf.org/doc/html/rfc3339) (einschließlich), die zum Lesen von Änderungsstreams verwendet wird. Ex-2021-10-12T07:20:50.52Z. Die Standardeinstellung ist der Zeitstempel für den Start der Pipeline, d. h. die aktuelle Zeit.
  • endTimestamp : Die End-DateTime (https://datatracker.ietf.org/doc/html/rfc3339) (einschließlich), die zum Lesen von Änderungsstreams verwendet wird.Ex-2021-10-12T07:20:50.52Z. Die Standardeinstellung ist eine unendliche Zeit in der Zukunft.
  • bigQueryProjectId: Das BigQuery-Projekt. Der Standardwert ist das Projekt für den Dataflow-Job.
  • bigQueryChangelogTableNameTemplate : Die Vorlage für den Namen der BigQuery-Tabelle, die das Änderungslog enthält. Die Standardeinstellung ist {_metadata_spanner_table_name}_changelog.
  • deadLetterQueueDirectory : Der Pfad zum Speichern nicht verarbeiteter Datensätze. Der Standardpfad ist ein Verzeichnis unter dem temporären Speicherort des Dataflow-Jobs. Der Standardwert ist in der Regel ausreichend.
  • dlqRetryMinutes: Die Anzahl der Minuten zwischen DLQ-Wiederholungen (Dead Letter Queue). Der Standardwert ist 10.
  • ignoreFields : Eine durch Kommas getrennte Liste von Feldern (Groß- und Kleinschreibung wird berücksichtigt) wird ignoriert. Diese Felder können Felder überwachter Tabellen oder Metadatenfelder sein, die von der Pipeline hinzugefügt werden. Ignorierte Felder werden nicht in BigQuery eingefügt. Wenn Sie das Feld "_metadata_spanner_table_name" ignorieren, wird auch der Parameter "bigQueryChangelogTableNameTemplate" ignoriert. Die Standardeinstellung ist leer.
  • disableDlqRetries: Gibt an, ob Wiederholungsversuche für den DLQ deaktiviert werden sollen. Die Standardeinstellung ist "false".
  • useStorageWriteApi: Wenn "true", verwendet die Pipeline die BigQuery Storage Write API (https://cloud.google.com/bigquery/docs/write-api). Der Standardwert ist false. Weitere Informationen finden Sie unter „Storage Write API verwenden“ (https://beam.apache.org/documentation/io/built-in/google-bigquery/#storage-write-api).
  • useStorageWriteApiAtLeastOnce: Gibt bei Verwendung der Storage Write API die Schreibsemantik an. Wenn Sie die "Mindestens einmal"-Semantik verwenden möchten (https://beam.apache.org/documentation/io/built-in/google-bigquery/#at-least-once-semantics), legen Sie diesen Parameter auf true fest. Wenn Sie die "Genau einmal"-Semantik verwenden möchten, legen Sie den Parameter auf false fest. Dieser Parameter gilt nur, wenn useStorageWriteApi true ist. Der Standardwert ist false.
  • numStorageWriteApiStreams: Gibt bei Verwendung der Storage Write API die Anzahl der Schreibstreams an. Wenn useStorageWriteApi true und useStorageWriteApiAtLeastOnce false ist, müssen Sie diesen Parameter festlegen. Die Standardeinstellung ist 0.
  • storageWriteApiTriggeringFrequencySec: Wenn Sie die Storage Write API verwenden, wird die Triggerhäufigkeit in Sekunden angegeben. Wenn useStorageWriteApi true und useStorageWriteApiAtLeastOnce false ist, müssen Sie diesen Parameter festlegen.

Führen Sie die Vorlage aus.

Console

  1. Rufen Sie die Dataflow-Seite Job aus Vorlage erstellen auf.
  2. Zur Seite "Job aus Vorlage erstellen“
  3. Geben Sie im Feld Jobname einen eindeutigen Jobnamen ein.
  4. Optional: Wählen Sie für Regionaler Endpunkt einen Wert aus dem Drop-down-Menü aus. Die Standardregion ist us-central1.

    Eine Liste der Regionen, in denen Sie einen Dataflow-Job ausführen können, finden Sie unter Dataflow-Standorte.

  5. Wählen Sie im Drop-down-Menü Dataflow-Vorlage die Option the Cloud Spanner change streams to BigQuery templateaus.
  6. Geben Sie Ihre Parameterwerte in die Parameterfelder ein.
  7. Klicken Sie auf Job ausführen.

gcloud

Führen Sie die Vorlage in der Shell oder im Terminal aus:

gcloud dataflow flex-template run JOB_NAME \
    --template-file-gcs-location=gs://dataflow-templates-REGION_NAME/VERSION/flex/Spanner_Change_Streams_to_BigQuery \
    --region REGION_NAME \
    --parameters \
spannerInstanceId=SPANNER_INSTANCE_ID,\
spannerDatabase=SPANNER_DATABASE,\
spannerMetadataInstanceId=SPANNER_METADATA_INSTANCE_ID,\
spannerMetadataDatabase=SPANNER_METADATA_DATABASE,\
spannerChangeStreamName=SPANNER_CHANGE_STREAM,\
bigQueryDataset=BIGQUERY_DATASET

Ersetzen Sie Folgendes:

  • JOB_NAME: ein eindeutiger Jobname Ihrer Wahl
  • VERSION: Die Version der Vorlage, die Sie verwenden möchten

    Sie können die folgenden Werte verwenden:

    • latest zur Verwendung der neuesten Version der Vorlage, die im nicht datierten übergeordneten Ordner im Bucket verfügbar ist: gs://dataflow-templates-REGION_NAME/latest/
    • Den Versionsnamen wie 2023-09-12-00_RC00, um eine bestimmte Version der Vorlage zu verwenden. Diese ist verschachtelt im jeweiligen datierten übergeordneten Ordner im Bucket enthalten: gs://dataflow-templates-REGION_NAME/.
  • REGION_NAME: die Region, in der Sie Ihren Dataflow-Job bereitstellen möchten, z. B. us-central1
  • SPANNER_INSTANCE_ID: Spanner-Instanz-ID
  • SPANNER_DATABASE: Spanner-Datenbank
  • SPANNER_METADATA_INSTANCE_ID: Spanner-Metadateninstanz-ID
  • SPANNER_METADATA_DATABASE: Spanner-Metadatendatenbank
  • SPANNER_CHANGE_STREAM: Spanner-Änderungsstream
  • BIGQUERY_DATASET: Das BigQuery-Dataset für die Ausgabe der Änderungsstreams.

API

Senden Sie eine HTTP-POST-Anfrage, um die Vorlage mithilfe der REST API auszuführen. Weitere Informationen zur API und ihren Autorisierungsbereichen finden Sie unter projects.templates.launch.

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/flexTemplates:launch
{
   "launch_parameter": {
      "jobName": "JOB_NAME",
      "parameters": {
          "spannerInstanceId": "SPANNER_INSTANCE_ID",
          "spannerDatabase": "SPANNER_DATABASE",
          "spannerMetadataInstanceId": "SPANNER_METADATA_INSTANCE_ID",
          "spannerMetadataDatabase": "SPANNER_METADATA_DATABASE",
          "spannerChangeStreamName": "SPANNER_CHANGE_STREAM",
          "bigQueryDataset": "BIGQUERY_DATASET"
      },
      "containerSpecGcsPath": "gs://dataflow-templates-LOCATION/VERSION/flex/Spanner_Change_Streams_to_BigQuery",
   }
}

Ersetzen Sie Folgendes:

  • PROJECT_ID: die ID des Google Cloud-Projekts, in dem Sie den Dataflow-Job ausführen möchten
  • JOB_NAME: ein eindeutiger Jobname Ihrer Wahl
  • VERSION: Die Version der Vorlage, die Sie verwenden möchten

    Sie können die folgenden Werte verwenden:

    • latest zur Verwendung der neuesten Version der Vorlage, die im nicht datierten übergeordneten Ordner im Bucket verfügbar ist: gs://dataflow-templates-REGION_NAME/latest/
    • Den Versionsnamen wie 2023-09-12-00_RC00, um eine bestimmte Version der Vorlage zu verwenden. Diese ist verschachtelt im jeweiligen datierten übergeordneten Ordner im Bucket enthalten: gs://dataflow-templates-REGION_NAME/.
  • LOCATION: die Region, in der Sie Ihren Dataflow-Job bereitstellen möchten, z. B. us-central1
  • SPANNER_INSTANCE_ID: Spanner-Instanz-ID
  • SPANNER_DATABASE: Spanner-Datenbank
  • SPANNER_METADATA_INSTANCE_ID: Spanner-Metadateninstanz-ID
  • SPANNER_METADATA_DATABASE: Spanner-Metadatendatenbank
  • SPANNER_CHANGE_STREAM: Spanner-Änderungsstream
  • BIGQUERY_DATASET: Das BigQuery-Dataset für die Ausgabe der Änderungsstreams.

Nächste Schritte