DAGs schreiben (Workflows)

In dieser Anleitung erfahren Sie, wie Sie einen gerichteten azyklischen Graphen (Directed Acyclic Graph; DAG) in Apache Airflow für die Ausführung in einer Cloud Composer-Umgebung schreiben.

DAG strukturieren

Ein DAG wird in einer Python-Datei definiert und besteht aus einer DAG-Definition, Operatoren und Operatorbeziehungen. Die folgenden Code-Snippets zeigen Beispiele der einzelnen Komponenten außerhalb des Kontexts:

  1. Eine DAG-Definition.

    Airflow 2

    import datetime
    
    from airflow import models
    default_dag_args = {
        # The start_date describes when a DAG is valid / can be run. Set this to a
        # fixed point in time rather than dynamically, since it is evaluated every
        # time a DAG is parsed. See:
        # https://airflow.apache.org/faq.html#what-s-the-deal-with-start-date
        'start_date': datetime.datetime(2018, 1, 1),
    }
    
    # Define a DAG (directed acyclic graph) of tasks.
    # Any task you create within the context manager is automatically added to the
    # DAG object.
    with models.DAG(
            'composer_sample_simple_greeting',
            schedule_interval=datetime.timedelta(days=1),
            default_args=default_dag_args) as dag:

    Airflow 1

    import datetime
    
    from airflow import models
    default_dag_args = {
        # The start_date describes when a DAG is valid / can be run. Set this to a
        # fixed point in time rather than dynamically, since it is evaluated every
        # time a DAG is parsed. See:
        # https://airflow.apache.org/faq.html#what-s-the-deal-with-start-date
        'start_date': datetime.datetime(2018, 1, 1),
    }
    
    # Define a DAG (directed acyclic graph) of tasks.
    # Any task you create within the context manager is automatically added to the
    # DAG object.
    with models.DAG(
            'composer_sample_simple_greeting',
            schedule_interval=datetime.timedelta(days=1),
            default_args=default_dag_args) as dag:

  2. Operatoren, mit denen die auszuführende Arbeit beschrieben wird. Eine Instanziierung eines Operators wird als Aufgabe bezeichnet.

    Airflow 2

    from airflow.operators import bash_operator
    from airflow.operators import python_operator
        def greeting():
            import logging
            logging.info('Hello World!')
    
        # An instance of an operator is called a task. In this case, the
        # hello_python task calls the "greeting" Python function.
        hello_python = python_operator.PythonOperator(
            task_id='hello',
            python_callable=greeting)
    
        # Likewise, the goodbye_bash task calls a Bash script.
        goodbye_bash = bash_operator.BashOperator(
            task_id='bye',
            bash_command='echo Goodbye.')

    Airflow 1

    from airflow.operators import bash_operator
    from airflow.operators import python_operator
        def greeting():
            import logging
            logging.info('Hello World!')
    
        # An instance of an operator is called a task. In this case, the
        # hello_python task calls the "greeting" Python function.
        hello_python = python_operator.PythonOperator(
            task_id='hello',
            python_callable=greeting)
    
        # Likewise, the goodbye_bash task calls a Bash script.
        goodbye_bash = bash_operator.BashOperator(
            task_id='bye',
            bash_command='echo Goodbye.')

  3. Aufgabenbeziehungen, die beschreiben, in welcher Reihenfolge die Ausführung erfolgen soll:

    Airflow 2

    # Define the order in which the tasks complete by using the >> and <<
    # operators. In this example, hello_python executes before goodbye_bash.
    hello_python >> goodbye_bash

    Airflow 1

    # Define the order in which the tasks complete by using the >> and <<
    # operators. In this example, hello_python executes before goodbye_bash.
    hello_python >> goodbye_bash

Der folgende Workflow ist ein vollständiges Beispiel mit den Aufgaben hello_python und goodbye_bash:

Airflow 2

from __future__ import print_function

import datetime

from airflow import models
from airflow.operators import bash_operator
from airflow.operators import python_operator

default_dag_args = {
    # The start_date describes when a DAG is valid / can be run. Set this to a
    # fixed point in time rather than dynamically, since it is evaluated every
    # time a DAG is parsed. See:
    # https://airflow.apache.org/faq.html#what-s-the-deal-with-start-date
    'start_date': datetime.datetime(2018, 1, 1),
}

# Define a DAG (directed acyclic graph) of tasks.
# Any task you create within the context manager is automatically added to the
# DAG object.
with models.DAG(
        'composer_sample_simple_greeting',
        schedule_interval=datetime.timedelta(days=1),
        default_args=default_dag_args) as dag:
    def greeting():
        import logging
        logging.info('Hello World!')

    # An instance of an operator is called a task. In this case, the
    # hello_python task calls the "greeting" Python function.
    hello_python = python_operator.PythonOperator(
        task_id='hello',
        python_callable=greeting)

    # Likewise, the goodbye_bash task calls a Bash script.
    goodbye_bash = bash_operator.BashOperator(
        task_id='bye',
        bash_command='echo Goodbye.')

    # Define the order in which the tasks complete by using the >> and <<
    # operators. In this example, hello_python executes before goodbye_bash.
    hello_python >> goodbye_bash

Airflow 1

from __future__ import print_function

import datetime

from airflow import models
from airflow.operators import bash_operator
from airflow.operators import python_operator

default_dag_args = {
    # The start_date describes when a DAG is valid / can be run. Set this to a
    # fixed point in time rather than dynamically, since it is evaluated every
    # time a DAG is parsed. See:
    # https://airflow.apache.org/faq.html#what-s-the-deal-with-start-date
    'start_date': datetime.datetime(2018, 1, 1),
}

# Define a DAG (directed acyclic graph) of tasks.
# Any task you create within the context manager is automatically added to the
# DAG object.
with models.DAG(
        'composer_sample_simple_greeting',
        schedule_interval=datetime.timedelta(days=1),
        default_args=default_dag_args) as dag:
    def greeting():
        import logging
        logging.info('Hello World!')

    # An instance of an operator is called a task. In this case, the
    # hello_python task calls the "greeting" Python function.
    hello_python = python_operator.PythonOperator(
        task_id='hello',
        python_callable=greeting)

    # Likewise, the goodbye_bash task calls a Bash script.
    goodbye_bash = bash_operator.BashOperator(
        task_id='bye',
        bash_command='echo Goodbye.')

    # Define the order in which the tasks complete by using the >> and <<
    # operators. In this example, hello_python executes before goodbye_bash.
    hello_python >> goodbye_bash

Weitere Informationen zum Definieren von Airflow-DAGs finden Sie in der Airflow-Anleitung und in den Airflow-Konzepten.

Operatoren

Die folgenden Beispiele enthalten einige beliebte Airflow-Operatoren. Informationen zu weiteren Airflow-Operatoren finden Sie in der Apache Airflow API-Referenz und im Quellcode der Operatoren core, contrib und providers.

BashOperator

Mit dem BashOperator können Sie Befehlszeilenprogramme ausführen.

Airflow 2

from airflow.operators import bash
    # Create BigQuery output dataset.
    make_bq_dataset = bash.BashOperator(
        task_id='make_bq_dataset',
        # Executing 'bq' command requires Google Cloud SDK which comes
        # preinstalled in Cloud Composer.
        bash_command=f'bq ls {bq_dataset_name} || bq mk {bq_dataset_name}')

Airflow 1

from airflow.operators import bash_operator
    # Create BigQuery output dataset.
    make_bq_dataset = bash_operator.BashOperator(
        task_id='make_bq_dataset',
        # Executing 'bq' command requires Google Cloud SDK which comes
        # preinstalled in Cloud Composer.
        bash_command='bq ls {} || bq mk {}'.format(
            bq_dataset_name, bq_dataset_name))

Cloud Composer führt die bereitgestellten Befehle in einem Bash-Skript auf einem Worker aus. Der Worker ist ein Docker-Container auf Basis von Debian und enthält mehrere Pakete.

PythonOperator

Verwenden Sie den PythonOperator, um beliebigen Python-Code auszuführen.

Cloud Composer führt den Python-Code in einem Container aus, der Pakete für die in Ihrer Umgebung verwendete Cloud Composer-Image-Version enthält.

Informationen zum Installieren weiterer Python-Pakete finden Sie unter Python-Abhängigkeiten installieren.

Google Cloud-Operatoren

Mit den Google Cloud-Airflow-Operatoren können Sie Aufgaben ausführen, die Google Cloud-Produkte nutzen. Cloud Composer konfiguriert automatisch eine Airflow-Verbindung zum Projekt der Umgebung.

EmailOperator

Verwenden Sie den EmailOperator, um E-Mails von einem DAG zu senden. Wenn Sie E-Mails aus einer Cloud Composer-Umgebung senden möchten, müssen Sie die Verwendung von SendGrid in der Umgebung konfigurieren.

Airflow 2

from airflow.operators import email
    # Send email confirmation (you will need to set up the email operator
    # See https://cloud.google.com/composer/docs/how-to/managing/creating#notification
    # for more info on configuring the email operator in Cloud Composer)
    email_summary = email.EmailOperator(
        task_id='email_summary',
        to=models.Variable.get('email'),
        subject='Sample BigQuery notify data ready',
        html_content="""
        Analyzed Stack Overflow posts data from {min_date} 12AM to {max_date}
        12AM. The most popular question was '{question_title}' with
        {view_count} views. Top 100 questions asked are now available at:
        {export_location}.
        """.format(
            min_date=min_query_date,
            max_date=max_query_date,
            question_title=(
                '{{ ti.xcom_pull(task_ids=\'bq_read_most_popular\', '
                'key=\'return_value\')[0][0] }}'
            ),
            view_count=(
                '{{ ti.xcom_pull(task_ids=\'bq_read_most_popular\', '
                'key=\'return_value\')[0][1] }}'
            ),
            export_location=output_file))

Airflow 1

from airflow.operators import email_operator
    # Send email confirmation
    email_summary = email_operator.EmailOperator(
        task_id='email_summary',
        to=models.Variable.get('email'),
        subject='Sample BigQuery notify data ready',
        html_content="""
        Analyzed Stack Overflow posts data from {min_date} 12AM to {max_date}
        12AM. The most popular question was '{question_title}' with
        {view_count} views. Top 100 questions asked are now available at:
        {export_location}.
        """.format(
            min_date=min_query_date,
            max_date=max_query_date,
            question_title=(
                '{{ ti.xcom_pull(task_ids=\'bq_read_most_popular\', '
                'key=\'return_value\')[0][0] }}'
            ),
            view_count=(
                '{{ ti.xcom_pull(task_ids=\'bq_read_most_popular\', '
                'key=\'return_value\')[0][1] }}'
            ),
            export_location=output_file))

Mitteilungen

Zum Senden einer E-Mail-Benachrichtigung, wenn ein Operator im DAG fehlerhaft ist, legen Sie für email_on_failure den Wert True fest. Zum Senden von E-Mails aus einer Cloud Composer-Umgebung müssen Sie Ihre Umgebung für die Verwendung von SendGrid konfigurieren.

Airflow 2

from airflow import models
default_dag_args = {
    'start_date': yesterday,
    # Email whenever an Operator in the DAG fails.
    'email': models.Variable.get('email'),
    'email_on_failure': True,
    'email_on_retry': False,
    'retries': 1,
    'retry_delay': datetime.timedelta(minutes=5),
    'project_id': project_id
}

with models.DAG(
        'composer_sample_bq_notify',
        schedule_interval=datetime.timedelta(weeks=4),
        default_args=default_dag_args) as dag:

Airflow 1

from airflow import models
default_dag_args = {
    'start_date': yesterday,
    # Email whenever an Operator in the DAG fails.
    'email': models.Variable.get('email'),
    'email_on_failure': True,
    'email_on_retry': False,
    'retries': 1,
    'retry_delay': datetime.timedelta(minutes=5),
    'project_id': models.Variable.get('gcp_project')
}

with models.DAG(
        'composer_sample_bq_notify',
        schedule_interval=datetime.timedelta(weeks=4),
        default_args=default_dag_args) as dag:

Leitlinien

  1. Platzieren Sie benutzerdefinierte Python-Bibliotheken im ZIP-Archiv eines DAG in einem verschachtelten Verzeichnis. Platzieren Sie Bibliotheken nicht auf der obersten Ebene des DAG-Verzeichnisses.

    Airflow prüft den Ordner dags/ nur auf DAGs in Python-Modulen, die sich auf der obersten Ebene des Ordners "DAGs" und auf der obersten Ebene eines ZIP-Archivs befinden, das ebenfalls im Ordner dags/ auf oberster Ebene enthalten ist. Wenn Airflow in einem ZIP-Archiv ein Python-Modul ermittelt, das weder airflow- noch DAG-Teilstrings enthält, beendet Airflow die Verarbeitung des ZIP-Archivs. Airflow liefert nur diejenigen DAGs, die bis zum jeweiligen Zeitpunkt ermittelt wurden.

  2. Achten Sie aus Gründen der Fehlertoleranz darauf, nicht mehrere DAG-Objekte im gleichen Python-Modul zu definieren.

  3. Definieren Sie subDAGs nicht als Objekte der obersten Ebene.

    Im Allgemeinen erfasst Airflow DAG-Objekte im globalen Namespace eines Moduls im Verzeichnis dags/ als DAGs der obersten Ebene. Als Objekte der obersten Ebene definierte SubDags werden zusätzlich zu den Zeitplänen anderer DAGs, in denen die SubDags eingebettet sind, nach ihrem eigenen Zeitplan ausgeführt.

  4. Platzieren Sie Dateien, die zum Zeitpunkt des DAG-Parsens erforderlich sind, im Verzeichnis dags/ und nicht im Verzeichnis data/. Das Verzeichnis data/ wird nicht im Webserver bereitgestellt.

FAQs zum Schreiben von DAGs

Wie minimiere ich Codewiederholungen, wenn ich die gleichen oder ähnliche Aufgaben in mehreren DAGs ausführen möchte?

Wir empfehlen das Definieren von Bibliotheken und Wrappern, um Codewiederholungen zu reduzieren.

Wie kann ich Code in mehreren DAG-Dateien wiederverwenden?

Binden Sie Hilfsfunktionen in eine lokale Python-Bibliothek ein und importieren Sie die Funktionen. Sie können in allen DAGs, die sich im dags/-Ordner Ihres Buckets befinden, auf die Funktionen verweisen.

Wie minimiere ich das Risiko unterschiedlicher Definitionen?

Angenommen, es gibt zwei Teams, die Rohdaten zu Umsatzkennzahlen zusammenfassen möchten. Die Teams schreiben zwei geringfügig unterschiedliche Aufgaben für den gleichen Sachverhalt. Definieren Sie Bibliotheken für die Arbeit mit den Umsatzdaten, sodass diejenigen, die DAGs implementieren, die Definition des zusammengefassten Umsatzes eindeutig festlegen müssen.

Wie lege ich Abhängigkeiten zwischen DAGs fest?

Das hängt davon ab, wie Sie die Abhängigkeit definieren möchten.

Wenn Sie zwei DAGs haben (DAG A und DAG B) und DAG B nach DAG A ausgelöst werden soll, können Sie einen TriggerDagRunOperator am Ende von DAG A platzieren.

Wenn DAG B nur von einem von DAG A generierten Artefakt abhängt (z. B. eine Pub/Sub-Meldung), ist ein Sensor möglicherweise besser geeignet.

Wenn DAG B eng mit DAG A integriert ist, können Sie die beiden DAGs möglicherweise in einen DAG zusammenführen.

Wie übergebe ich eindeutige Ausführungs-IDs an einen DAG und die zugehörigen Aufgaben?

Angenommen, es sollen Dataproc-Clusternamen und -Dateipfade übergeben werden.

In diesem Fall können Sie eine zufällige eindeutige ID generieren und dafür str(uuid.uuid4()) in einem PythonOperator zurückgeben. Dadurch wird die ID in XComs abgelegt, sodass Sie in anderen Operatoren über Vorlagenfelder darauf verweisen können.

Prüfen Sie vor dem Generieren einer uuid, ob eine DagRun-spezifische ID sinnvoller wäre. Sie können auf diese IDs in Jinja-Substitutionen auch mit Makros verweisen.

Wie trenne ich Aufgaben in einem DAG?

Eine Aufgabe sollte eine idempotente Arbeitseinheit sein. Vermeiden Sie es deshalb, einen aus mehreren Schritten bestehenden Workflow in eine einzelne Aufgabe aufzunehmen, z. B. in ein komplexes Programm, das in einem PythonOperator ausgeführt wird.

Die Airflow-native Methode für die Wiederverwendung von Workflows-Definitionscode für ist der SubDagOperator. Bei der Verwendung dieses Operators in Cloud Composer gelten jedoch Einschränkungen.

Soll ich mehrere Aufgaben in einem einzelnen DAG definieren, um Daten aus mehreren Quellen zusammenzufassen?

Angenommen, ich habe mehrere Tabellen mit Rohdaten und möchte tägliche Zusammenfassungen für jede einzelne Tabelle erstellen. Die Aufgaben sind nicht voneinander abhängig. Soll ich eine Aufgabe und einen DAG für jede Tabelle oder einen allgemeinen DAG erstellen?

Wenn es für Sie kein Problem ist, dass jede Aufgabe die gleichen Attribute auf DAG-Ebene verwendet (z. B. schedule_interval), ist es sinnvoll, mehrere Aufgaben in einem einzigen DAG zu definieren. Andernfalls können zur Minimierung der Codewiederholung mehrere DAGs aus einem einzigen Python-Modul generiert werden. Dazu platzieren Sie diese in den globalen globals() des Moduls.

Wie beschränke ich die Anzahl gleichzeitiger Aufgaben, die in einem DAG ausgeführt werden?

Ich möchte z. B. vermeiden, dass API-Nutzungslimits und -kontingente überschritten oder zu viele Prozesse gleichzeitig ausgeführt werden.

Sie können dazu Airflow-Pools in der Airflow-Weboberfläche definieren und in Ihren DAGs Aufgaben mit vorhandenen Pools verknüpfen.

FAQs zur Verwendung von Operatoren

Soll ich den DockerOperator verwenden?

Wir raten von der Verwendung des DockerOperator ab, es sei denn, er wird zum Starten von Containern in einer Remote-Docker-Installation verwendet (nicht im Cluster einer Umgebung). In einer Cloud Composer-Umgebung hat der Operator keinen Zugriff auf Docker-Daemons.

Verwenden Sie stattdessen KubernetesPodOperator oder GKEPodOperator. Diese Operatoren können Kubernetes-Pods in Kubernetes- bzw. GKE-Clustern starten. Es ist nicht empfehlenswert, Pods im Cluster einer Umgebung zu starten, da dies zu Konkurrenz um Ressourcen führen kann.

Soll ich den SubDagOperator verwenden?

Die Verwendung von SubDagOperator wird nicht empfohlen.

SubDagOperator ermöglicht zwar eine Kapselung, SubDag-Aufgaben erfordern jedoch einen Aufgaben-Slot. Wenn ein Airflow-Worker, der die SubDag-Aufgabe ausführt, abstürzt, schlagen alle Aufgaben im SubDag fehl. Das Ergebnis sind nicht verlässliche Workflows.

Soll ich Python-Code nur in PythonOperators ausführen, um Python-Operatoren vollständig zu trennen?

Abhängig von Ihrem Ziel haben Sie mehrere Optionen.

Falls Ihr einziges Ziel ist, separate Python-Abhängigkeiten beizubehalten, können Sie PythonVirtualenvOperator verwenden.

Erwägen Sie, den KubernetesPodOperator zu verwenden. Mit diesem Operator können Sie Kubernetes-Pods definieren und die Pods in anderen Clustern ausführen.

Wie verwende ich den KubernetesPodOperator außerhalb von Google Cloud?

Sie können dafür eine Konfigurationsdatei bereitstellen, in der die Art der Authentifizierung beim GKE-Cluster festgelegt wird, und die Datei im /data-Ordner im Bucket Ihrer Umgebung platzieren.

Dieser Ordner wird in der gesamten Cloud Composer-Umgebung bereitgestellt.

Wie füge ich benutzerdefinierte binäre oder Nicht-PyPI-Pakete hinzu?

Sie können dazu Pakete installieren, die in privaten Paket-Repositories gehostet werden,

Sie können auch den KubernetesPodOperator verwenden, um einen Kubernetes-Pod mit einem eigenen Image auszuführen, das Sie aus benutzerdefinierten Paketen erstellt haben.

Wie übergebe ich Argumente einheitlich an einen DAG und die zugehörigen Aufgaben?

Sie können die integrierte Airflow-Unterstützung für Jinja-Vorlagen nutzen, um Argumente zu übergeben, die in Vorlagenfeldern verwendet werden können.

Wann findet die Vorlagenersetzung statt?

Die Vorlagen werden auf den Airflow-Workern unmittelbar vor dem Aufruf der pre_execute-Funktion eines Operators ersetzt. In der Praxis bedeutet dies, dass Vorlagen erst unmittelbar vor der Ausführung einer Aufgabe ersetzt werden.

Wie kann ich erkennen, welche Operatorargumente die Vorlagenersetzung unterstützen?

Operatorargumente, die die Jinja2-Vorlagenersetzung unterstützen, sind explizit entsprechend gekennzeichnet.

Suchen Sie in der Operatordefinition nach dem Feld template_fields. Es enthält eine Liste der Argumentnamen, für die die Vorlagenersetzung verwendet wird.

Dazu gehört beispielsweise der BashOperator, mit dem Vorlagen für die Argumente bash_command und env unterstützt werden.

Nächste Schritte