使用 Google Kubernetes Engine Operator

Cloud Composer 1 | Cloud Composer 2

本页面介绍如何使用 Google Kubernetes Engine Operator 在 Google Kubernetes Engine 中创建集群,并且在这些集群中启动 Kubernetes pod

Google Kubernetes Engine Operator 在指定集群中运行 Kubernetes pod,该集群可以是与您的环境无关的独立集群。相比之下,KubernetesPodOperator 会在您环境的集群中运行 Kubernetes pod

本页面将向您介绍一个示例 DAG,即使用 GKECreateClusterOperator 创建 Google Kubernetes Engine 集群,使用具有以下配置的 GKEStartPodOperator,并使用 GKEDeleteClusterOperator 将其删除:

准备工作

GKE Operator 配置

如需继续参照本示例执行操作,请将整个 gke_operator.py 文件放入您环境的 dags/ 文件夹中,或将相关代码添加到某个 DAG

创建集群

此处显示的代码创建包含一个 Google Kubernetes Engine 集群,它包含两个节点池(pool-0pool-1),并且每个节点池各有一个节点。如果需要,您可以在 body 中通过 Google Kubernetes Engine API 来设置其他参数。

apache-airflow-providers-google 5.1.0 版之前,不可能将 node_pools 对象传入 GKECreateClusterOperator。如果您使用的是 Airflow 2,请确保您的环境使用 apache-airflow-providers-google 5.1.0 或更高版本。您可以通过指定 apache-airflow-providers-google>=5.1.0 作为必需版本,来安装此 PyPI 软件包的较新版本

# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
# It is recommended to use regional clusters for increased reliability
# though passing a zone in the location parameter is also valid
CLUSTER_REGION = "us-west1"
CLUSTER_NAME = "example-cluster"
CLUSTER = {
    "name": CLUSTER_NAME,
    "node_pools": [
        {"name": "pool-0", "initial_node_count": 1},
        {"name": "pool-1", "initial_node_count": 1},
    ],
}
create_cluster = GKECreateClusterOperator(
    task_id="create_cluster",
    project_id=PROJECT_ID,
    location=CLUSTER_REGION,
    body=CLUSTER,
)

在集群中启动工作负载

以下部分介绍了示例中的每个 GKEStartPodOperator 配置。要详细了解每个配置变量,请参见 GKE Operator 的 Airflow 参考文档



from airflow import models
from airflow.providers.google.cloud.operators.kubernetes_engine import (
    GKECreateClusterOperator,
    GKEDeleteClusterOperator,
    GKEStartPodOperator,
)

from airflow.utils.dates import days_ago

with models.DAG(
    "example_gcp_gke",
    schedule_interval=None,  # Override to match your needs
    start_date=days_ago(1),
    tags=["example"],
) as dag:

    # TODO(developer): update with your values
    PROJECT_ID = "my-project-id"
    # It is recommended to use regional clusters for increased reliability
    # though passing a zone in the location parameter is also valid
    CLUSTER_REGION = "us-west1"
    CLUSTER_NAME = "example-cluster"
    CLUSTER = {
        "name": CLUSTER_NAME,
        "node_pools": [
            {"name": "pool-0", "initial_node_count": 1},
            {"name": "pool-1", "initial_node_count": 1},
        ],
    }
    create_cluster = GKECreateClusterOperator(
        task_id="create_cluster",
        project_id=PROJECT_ID,
        location=CLUSTER_REGION,
        body=CLUSTER,
    )

    kubernetes_min_pod = GKEStartPodOperator(
        # The ID specified for the task.
        task_id="pod-ex-minimum",
        # Name of task you want to run, used to generate Pod ID.
        name="pod-ex-minimum",
        project_id=PROJECT_ID,
        location=CLUSTER_REGION,
        cluster_name=CLUSTER_NAME,
        # Entrypoint of the container, if not specified the Docker container's
        # entrypoint is used. The cmds parameter is templated.
        cmds=["echo"],
        # The namespace to run within Kubernetes, default namespace is
        # `default`.
        namespace="default",
        # Docker image specified. Defaults to hub.docker.com, but any fully
        # qualified URLs will point to a custom repository. Supports private
        # gcr.io images if the Composer Environment is under the same
        # project-id as the gcr.io images and the service account that Composer
        # uses has permission to access the Google Container Registry
        # (the default service account has permission)
        image="gcr.io/gcp-runtimes/ubuntu_18_0_4",
    )

    kubenetes_template_ex = GKEStartPodOperator(
        task_id="ex-kube-templates",
        name="ex-kube-templates",
        project_id=PROJECT_ID,
        location=CLUSTER_REGION,
        cluster_name=CLUSTER_NAME,
        namespace="default",
        image="bash",
        # All parameters below are able to be templated with jinja -- cmds,
        # arguments, env_vars, and config_file. For more information visit:
        # https://airflow.apache.org/docs/apache-airflow/stable/macros-ref.html
        # Entrypoint of the container, if not specified the Docker container's
        # entrypoint is used. The cmds parameter is templated.
        cmds=["echo"],
        # DS in jinja is the execution date as YYYY-MM-DD, this docker image
        # will echo the execution date. Arguments to the entrypoint. The docker
        # image's CMD is used if this is not provided. The arguments parameter
        # is templated.
        arguments=["{{ ds }}"],
        # The var template variable allows you to access variables defined in
        # Airflow UI. In this case we are getting the value of my_value and
        # setting the environment variable `MY_VALUE`. The pod will fail if
        # `my_value` is not set in the Airflow UI.
        env_vars={"MY_VALUE": "{{ var.value.my_value }}"},
    )

    kubernetes_affinity_ex = GKEStartPodOperator(
        task_id="ex-pod-affinity",
        project_id=PROJECT_ID,
        location=CLUSTER_REGION,
        cluster_name=CLUSTER_NAME,
        name="ex-pod-affinity",
        namespace="default",
        image="perl",
        cmds=["perl"],
        arguments=["-Mbignum=bpi", "-wle", "print bpi(2000)"],
        # affinity allows you to constrain which nodes your pod is eligible to
        # be scheduled on, based on labels on the node. In this case, if the
        # label 'cloud.google.com/gke-nodepool' with value
        # 'nodepool-label-value' or 'nodepool-label-value2' is not found on any
        # nodes, it will fail to schedule.
        affinity={
            "nodeAffinity": {
                # requiredDuringSchedulingIgnoredDuringExecution means in order
                # for a pod to be scheduled on a node, the node must have the
                # specified labels. However, if labels on a node change at
                # runtime such that the affinity rules on a pod are no longer
                # met, the pod will still continue to run on the node.
                "requiredDuringSchedulingIgnoredDuringExecution": {
                    "nodeSelectorTerms": [
                        {
                            "matchExpressions": [
                                {
                                    # When nodepools are created in Google Kubernetes
                                    # Engine, the nodes inside of that nodepool are
                                    # automatically assigned the label
                                    # 'cloud.google.com/gke-nodepool' with the value of
                                    # the nodepool's name.
                                    "key": "cloud.google.com/gke-nodepool",
                                    "operator": "In",
                                    # The label key's value that pods can be scheduled
                                    # on.
                                    "values": [
                                        "pool-1",
                                    ],
                                }
                            ]
                        }
                    ]
                }
            }
        },
    )
    kubernetes_full_pod = GKEStartPodOperator(
        task_id="ex-all-configs",
        name="full",
        project_id=PROJECT_ID,
        location=CLUSTER_REGION,
        cluster_name=CLUSTER_NAME,
        namespace="default",
        image="perl",
        # Entrypoint of the container, if not specified the Docker container's
        # entrypoint is used. The cmds parameter is templated.
        cmds=["perl"],
        # Arguments to the entrypoint. The docker image's CMD is used if this
        # is not provided. The arguments parameter is templated.
        arguments=["-Mbignum=bpi", "-wle", "print bpi(2000)"],
        # The secrets to pass to Pod, the Pod will fail to create if the
        # secrets you specify in a Secret object do not exist in Kubernetes.
        secrets=[],
        # Labels to apply to the Pod.
        labels={"pod-label": "label-name"},
        # Timeout to start up the Pod, default is 120.
        startup_timeout_seconds=120,
        # The environment variables to be initialized in the container
        # env_vars are templated.
        env_vars={"EXAMPLE_VAR": "/example/value"},
        # If true, logs stdout output of container. Defaults to True.
        get_logs=True,
        # Determines when to pull a fresh image, if 'IfNotPresent' will cause
        # the Kubelet to skip pulling an image if it already exists. If you
        # want to always pull a new image, set it to 'Always'.
        image_pull_policy="Always",
        # Annotations are non-identifying metadata you can attach to the Pod.
        # Can be a large range of data, and can include characters that are not
        # permitted by labels.
        annotations={"key1": "value1"},
        # Resource specifications for Pod, this will allow you to set both cpu
        # and memory limits and requirements.
        # Prior to Airflow 1.10.4, resource specifications were
        # passed as a Pod Resources Class object,
        # If using this example on a version of Airflow prior to 1.10.4,
        # import the "pod" package from airflow.contrib.kubernetes and use
        # resources = pod.Resources() instead passing a dict
        # For more info see:
        # https://github.com/apache/airflow/pull/4551
        resources={"limit_memory": "250M", "limit_cpu": "100m"},
        # If true, the content of /airflow/xcom/return.json from container will
        # also be pushed to an XCom when the container ends.
        do_xcom_push=False,
        # List of Volume objects to pass to the Pod.
        volumes=[],
        # List of VolumeMount objects to pass to the Pod.
        volume_mounts=[],
        # Affinity determines which nodes the Pod can run on based on the
        # config. For more information see:
        # https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
        affinity={},
    )
    delete_cluster = GKEDeleteClusterOperator(
        task_id="delete_cluster",
        name=CLUSTER_NAME,
        project_id=PROJECT_ID,
        location=CLUSTER_REGION,
    )

    create_cluster >> kubernetes_min_pod >> delete_cluster
    create_cluster >> kubernetes_full_pod >> delete_cluster
    create_cluster >> kubernetes_affinity_ex >> delete_cluster
    create_cluster >> kubenetes_template_ex >> delete_cluster

最少的配置工作量

如需在 GKE 集群中使用 GKEStartPodOperator 启动 pod,仅需要 project_idlocationcluster_namenamenamespaceimagetask_id 选项。

当您将以下代码段放入 DAG 时,只要定义了之前列出的参数且有效,pod-ex-minimum 任务就会成功。

# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
# It is recommended to use regional clusters for increased reliability
# though passing a zone in the location parameter is also valid
CLUSTER_REGION = "us-west1"
CLUSTER_NAME = "example-cluster"
kubernetes_min_pod = GKEStartPodOperator(
    # The ID specified for the task.
    task_id="pod-ex-minimum",
    # Name of task you want to run, used to generate Pod ID.
    name="pod-ex-minimum",
    project_id=PROJECT_ID,
    location=CLUSTER_REGION,
    cluster_name=CLUSTER_NAME,
    # Entrypoint of the container, if not specified the Docker container's
    # entrypoint is used. The cmds parameter is templated.
    cmds=["echo"],
    # The namespace to run within Kubernetes, default namespace is
    # `default`.
    namespace="default",
    # Docker image specified. Defaults to hub.docker.com, but any fully
    # qualified URLs will point to a custom repository. Supports private
    # gcr.io images if the Composer Environment is under the same
    # project-id as the gcr.io images and the service account that Composer
    # uses has permission to access the Google Container Registry
    # (the default service account has permission)
    image="gcr.io/gcp-runtimes/ubuntu_18_0_4",
)

模板配置

Airflow 支持使用 Jinja 生成模板。您必须在 Operator 中声明所需变量(task_idnamenamespaceimage)。如以下示例所示,您可以搭配使用 Jinja 和所有其他参数生成模板,包括 cmdsargumentsenv_vars

在不更改 DAG 或您的环境的情况下,ex-kube-templates 任务失败。设置名为 my_value 的 Airflow 变量,以使此 DAG 成功。

如需通过 gcloud 或 Airflow 界面设置 my_value,请执行以下操作:

gcloud

对于 Airflow 2,请输入以下命令:

gcloud composer environments run ENVIRONMENT \
    --location LOCATION \
    variables set -- \
    my_value example_value

替换:

  • ENVIRONMENT 替换为环境的名称。
  • LOCATION 替换为环境所在的区域。

Airflow 界面

在 Airflow 2 界面中:

  1. 在工具栏中,选择 Admin > Variables

  2. List Variable 页面上,点击 Add a new record

  3. Add Variable 页面上,输入以下信息:

    • Key:my_value
    • Val:example_value
  4. 点击保存

模板配置

# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
# It is recommended to use regional clusters for increased reliability
# though passing a zone in the location parameter is also valid
CLUSTER_REGION = "us-west1"
CLUSTER_NAME = "example-cluster"
kubenetes_template_ex = GKEStartPodOperator(
    task_id="ex-kube-templates",
    name="ex-kube-templates",
    project_id=PROJECT_ID,
    location=CLUSTER_REGION,
    cluster_name=CLUSTER_NAME,
    namespace="default",
    image="bash",
    # All parameters below are able to be templated with jinja -- cmds,
    # arguments, env_vars, and config_file. For more information visit:
    # https://airflow.apache.org/docs/apache-airflow/stable/macros-ref.html
    # Entrypoint of the container, if not specified the Docker container's
    # entrypoint is used. The cmds parameter is templated.
    cmds=["echo"],
    # DS in jinja is the execution date as YYYY-MM-DD, this docker image
    # will echo the execution date. Arguments to the entrypoint. The docker
    # image's CMD is used if this is not provided. The arguments parameter
    # is templated.
    arguments=["{{ ds }}"],
    # The var template variable allows you to access variables defined in
    # Airflow UI. In this case we are getting the value of my_value and
    # setting the environment variable `MY_VALUE`. The pod will fail if
    # `my_value` is not set in the Airflow UI.
    env_vars={"MY_VALUE": "{{ var.value.my_value }}"},
)

Pod 亲和性配置

GKEStartPodOperator 中配置 affinity 参数后,您可以控制要在哪些节点上安排 Pod,例如仅在特定节点池中的节点上安排。创建集群时,创建了两个名为 pool-0pool-1 的节点池。此操作节点指定必须仅在 pool-1 中运行 pod。

Cloud Composer 环境箭头,显示已启动的 pod 位于 pool-1 的临时 GKE 集群中,pool-1 显示为 Kubernetes Engine 组内与 pool-0 不同的框。
Cloud Composer Kubernetes pod 启动位置与 pod 亲和性(点击可放大)


# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
# It is recommended to use regional clusters for increased reliability
# though passing a zone in the location parameter is also valid
CLUSTER_REGION = "us-west1"
CLUSTER_NAME = "example-cluster"
kubernetes_affinity_ex = GKEStartPodOperator(
    task_id="ex-pod-affinity",
    project_id=PROJECT_ID,
    location=CLUSTER_REGION,
    cluster_name=CLUSTER_NAME,
    name="ex-pod-affinity",
    namespace="default",
    image="perl",
    cmds=["perl"],
    arguments=["-Mbignum=bpi", "-wle", "print bpi(2000)"],
    # affinity allows you to constrain which nodes your pod is eligible to
    # be scheduled on, based on labels on the node. In this case, if the
    # label 'cloud.google.com/gke-nodepool' with value
    # 'nodepool-label-value' or 'nodepool-label-value2' is not found on any
    # nodes, it will fail to schedule.
    affinity={
        "nodeAffinity": {
            # requiredDuringSchedulingIgnoredDuringExecution means in order
            # for a pod to be scheduled on a node, the node must have the
            # specified labels. However, if labels on a node change at
            # runtime such that the affinity rules on a pod are no longer
            # met, the pod will still continue to run on the node.
            "requiredDuringSchedulingIgnoredDuringExecution": {
                "nodeSelectorTerms": [
                    {
                        "matchExpressions": [
                            {
                                # When nodepools are created in Google Kubernetes
                                # Engine, the nodes inside of that nodepool are
                                # automatically assigned the label
                                # 'cloud.google.com/gke-nodepool' with the value of
                                # the nodepool's name.
                                "key": "cloud.google.com/gke-nodepool",
                                "operator": "In",
                                # The label key's value that pods can be scheduled
                                # on.
                                "values": [
                                    "pool-1",
                                ],
                            }
                        ]
                    }
                ]
            }
        }
    },
)

完整配置

此示例展示了您可以在 GKEStartPodOperator 中配置的所有变量。您不用修改代码,ex-all-configs 任务也会成功。

如需详细了解每个变量,请参见 GKE Operator 的 Airflow 参考文档

# TODO(developer): update with your values
PROJECT_ID = "my-project-id"
# It is recommended to use regional clusters for increased reliability
# though passing a zone in the location parameter is also valid
CLUSTER_REGION = "us-west1"
CLUSTER_NAME = "example-cluster"
kubernetes_full_pod = GKEStartPodOperator(
    task_id="ex-all-configs",
    name="full",
    project_id=PROJECT_ID,
    location=CLUSTER_REGION,
    cluster_name=CLUSTER_NAME,
    namespace="default",
    image="perl",
    # Entrypoint of the container, if not specified the Docker container's
    # entrypoint is used. The cmds parameter is templated.
    cmds=["perl"],
    # Arguments to the entrypoint. The docker image's CMD is used if this
    # is not provided. The arguments parameter is templated.
    arguments=["-Mbignum=bpi", "-wle", "print bpi(2000)"],
    # The secrets to pass to Pod, the Pod will fail to create if the
    # secrets you specify in a Secret object do not exist in Kubernetes.
    secrets=[],
    # Labels to apply to the Pod.
    labels={"pod-label": "label-name"},
    # Timeout to start up the Pod, default is 120.
    startup_timeout_seconds=120,
    # The environment variables to be initialized in the container
    # env_vars are templated.
    env_vars={"EXAMPLE_VAR": "/example/value"},
    # If true, logs stdout output of container. Defaults to True.
    get_logs=True,
    # Determines when to pull a fresh image, if 'IfNotPresent' will cause
    # the Kubelet to skip pulling an image if it already exists. If you
    # want to always pull a new image, set it to 'Always'.
    image_pull_policy="Always",
    # Annotations are non-identifying metadata you can attach to the Pod.
    # Can be a large range of data, and can include characters that are not
    # permitted by labels.
    annotations={"key1": "value1"},
    # Resource specifications for Pod, this will allow you to set both cpu
    # and memory limits and requirements.
    # Prior to Airflow 1.10.4, resource specifications were
    # passed as a Pod Resources Class object,
    # If using this example on a version of Airflow prior to 1.10.4,
    # import the "pod" package from airflow.contrib.kubernetes and use
    # resources = pod.Resources() instead passing a dict
    # For more info see:
    # https://github.com/apache/airflow/pull/4551
    resources={"limit_memory": "250M", "limit_cpu": "100m"},
    # If true, the content of /airflow/xcom/return.json from container will
    # also be pushed to an XCom when the container ends.
    do_xcom_push=False,
    # List of Volume objects to pass to the Pod.
    volumes=[],
    # List of VolumeMount objects to pass to the Pod.
    volume_mounts=[],
    # Affinity determines which nodes the Pod can run on based on the
    # config. For more information see:
    # https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
    affinity={},
)

删除集群

此处所示代码会删除在本指南开头创建的集群。

delete_cluster = GKEDeleteClusterOperator(
    task_id="delete_cluster",
    name=CLUSTER_NAME,
    project_id=PROJECT_ID,
    location=CLUSTER_REGION,
)

后续步骤