Raggruppamento di attività all'interno dei DAG

Cloud Composer 1 | Cloud Composer 2 | Cloud Composer 3

Questa pagina descrive come raggruppare le attività nelle pipeline Airflow utilizzando i seguenti pattern di progettazione:

  • Raggruppamento delle attività nel grafico DAG.
  • Attivazione dei DAG secondari da un DAG padre.
  • Raggruppamento delle attività con l'operatore TaskGroup (solo con Airflow 2).

Raggruppamento delle attività nel grafico DAG

Per raggruppare le attività in determinate fasi della pipeline, puoi utilizzare le relazioni tra le attività nel file DAG.

Considera l'esempio seguente:

Le attività possono essere raggruppate in un DAG Airflow

In questo flusso di lavoro, le attività op-1 e op-2 vengono eseguite insieme dopo il l'attività start. Puoi farlo raggruppando le attività con l'istruzione start >> [task_1, task_2].

Il seguente codice fornisce un'implementazione completa del DAG sopra:

Flusso d'aria 2

from airflow import DAG
from airflow.operators.bash import BashOperator
from airflow.operators.dummy import DummyOperator
from airflow.utils.dates import days_ago

DAG_NAME = "all_tasks_in_one_dag"

args = {"owner": "airflow", "start_date": days_ago(1), "schedule_interval": "@once"}

with DAG(dag_id=DAG_NAME, default_args=args) as dag:
    start = DummyOperator(task_id="start")

    task_1 = BashOperator(task_id="op-1", bash_command=":", dag=dag)

    task_2 = BashOperator(task_id="op-2", bash_command=":", dag=dag)

    some_other_task = DummyOperator(task_id="some-other-task")

    task_3 = BashOperator(task_id="op-3", bash_command=":", dag=dag)

    task_4 = BashOperator(task_id="op-4", bash_command=":", dag=dag)

    end = DummyOperator(task_id="end")

    start >> [task_1, task_2] >> some_other_task >> [task_3, task_4] >> end

Airflow 1


from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.operators.dummy_operator import DummyOperator
from airflow.utils.dates import days_ago

DAG_NAME = "all_tasks_in_one_dag"

args = {"owner": "airflow", "start_date": days_ago(1), "schedule_interval": "@once"}

with DAG(dag_id=DAG_NAME, default_args=args) as dag:
    start = DummyOperator(task_id="start")

    task_1 = BashOperator(task_id="op-1", bash_command=":", dag=dag)

    task_2 = BashOperator(task_id="op-2", bash_command=":", dag=dag)

    some_other_task = DummyOperator(task_id="some-other-task")

    task_3 = BashOperator(task_id="op-3", bash_command=":", dag=dag)

    task_4 = BashOperator(task_id="op-4", bash_command=":", dag=dag)

    end = DummyOperator(task_id="end")

    start >> [task_1, task_2] >> some_other_task >> [task_3, task_4] >> end

Attivazione dei DAG secondari da un DAG padre

Puoi attivare un DAG da un altro DAG con il TriggerDagRunOperator. A seconda della versione di Airflow, puoi trovare l'operatore TriggerDagRunOperator in un altro modulo:

Considera il seguente esempio:

I DAG possono essere attivati dall'interno di un DAG con il comando TriggerDagRunOperator

In questo flusso di lavoro, i blocchi dag_1 e dag_2 rappresentano una serie di attività raggruppati in un DAG separato in Cloud Composer completamente gestito di Google Cloud.

L'implementazione di questo flusso di lavoro richiede due file DAG separati. Il file DAG di controllo ha il seguente aspetto:

Airflow 2

from airflow import DAG
from airflow.operators.dummy import DummyOperator
from airflow.operators.trigger_dagrun import TriggerDagRunOperator
from airflow.utils.dates import days_ago


with DAG(
    dag_id="controller_dag_to_trigger_other_dags",
    default_args={"owner": "airflow"},
    start_date=days_ago(1),
    schedule_interval="@once",
) as dag:
    start = DummyOperator(task_id="start")

    trigger_1 = TriggerDagRunOperator(
        task_id="dag_1",
        trigger_dag_id="dag-to-trigger",  # Ensure this equals the dag_id of the DAG to trigger
        conf={"message": "Hello World"},
    )
    trigger_2 = TriggerDagRunOperator(
        task_id="dag_2",
        trigger_dag_id="dag-to-trigger",  # Ensure this equals the dag_id of the DAG to trigger
        conf={"message": "Hello World"},
    )

    some_other_task = DummyOperator(task_id="some-other-task")

    end = DummyOperator(task_id="end")

    start >> trigger_1 >> some_other_task >> trigger_2 >> end

Flusso d'aria 1

from airflow import DAG
from airflow.operators.dagrun_operator import TriggerDagRunOperator
from airflow.operators.dummy_operator import DummyOperator
from airflow.utils.dates import days_ago


with DAG(
    dag_id="controller_dag_to_trigger_other_dags",
    default_args={"owner": "airflow"},
    start_date=days_ago(1),
    schedule_interval="@once",
) as dag:
    start = DummyOperator(task_id="start")

    trigger_1 = TriggerDagRunOperator(
        task_id="dag_1",
        trigger_dag_id="dag-to-trigger",  # Ensure this equals the dag_id of the DAG to trigger
        conf={"message": "Hello World"},
    )
    trigger_2 = TriggerDagRunOperator(
        task_id="dag_2",
        trigger_dag_id="dag-to-trigger",  # Ensure this equals the dag_id of the DAG to trigger
        conf={"message": "Hello World"},
    )

    some_other_task = DummyOperator(task_id="some-other-task")

    end = DummyOperator(task_id="end")

    start >> trigger_1 >> some_other_task >> trigger_2 >> end

L'implementazione del DAG secondario, attivato dal DAG di controllo, è la seguente:

Airflow 2

from airflow import DAG
from airflow.operators.dummy import DummyOperator
from airflow.utils.dates import days_ago

DAG_NAME = "dag-to-trigger"

args = {"owner": "airflow", "start_date": days_ago(1), "schedule_interval": "None"}

with DAG(dag_id=DAG_NAME, default_args=args) as dag:
    dag_task = DummyOperator(task_id="dag-task")

Flusso d'aria 1

from airflow import DAG
from airflow.operators.dummy_operator import DummyOperator
from airflow.utils.dates import days_ago


DAG_NAME = "dag-to-trigger"

args = {"owner": "airflow", "start_date": days_ago(1), "schedule_interval": "None"}

with DAG(dag_id=DAG_NAME, default_args=args) as dag:
    dag_task = DummyOperator(task_id="dag-task")

Devi caricare entrambi i file DAG nel tuo ambiente Cloud Composer per far funzionare il flusso di lavoro.

Raggruppamento delle attività con l'operatore TaskGroup

In Airflow 2, puoi utilizzare Operatore TaskGroup per raggruppare le attività nel tuo DAG. Le attività definite all'interno di un blocco TaskGroup fanno comunque parte del DAG principale.

Considera l'esempio seguente:

Le attività possono essere raggruppate visivamente nella UI con l'operatore TaskGroup in Airflow 2

Le attività op-1 e op-2 sono raggruppate in un blocco con ID taskgroup_1. Un'implementazione di questo flusso di lavoro ha il seguente codice:

from airflow.models.dag import DAG
from airflow.operators.bash import BashOperator
from airflow.operators.dummy import DummyOperator
from airflow.utils.dates import days_ago
from airflow.utils.task_group import TaskGroup

with DAG(dag_id="taskgroup_example", start_date=days_ago(1)) as dag:
    start = DummyOperator(task_id="start")

    with TaskGroup("taskgroup_1", tooltip="task group #1") as section_1:
        task_1 = BashOperator(task_id="op-1", bash_command=":")
        task_2 = BashOperator(task_id="op-2", bash_command=":")

    with TaskGroup("taskgroup_2", tooltip="task group #2") as section_2:
        task_3 = BashOperator(task_id="op-3", bash_command=":")
        task_4 = BashOperator(task_id="op-4", bash_command=":")

    some_other_task = DummyOperator(task_id="some-other-task")

    end = DummyOperator(task_id="end")

    start >> section_1 >> some_other_task >> section_2 >> end