Limpe a base de dados do Airflow

Cloud Composer 3 | Cloud Composer 2 | Cloud Composer 1

Esta página explica como manter a base de dados do Airflow no seu ambiente.

Limites para o tamanho da base de dados

À medida que o tempo passa, a base de dados do Airflow do seu ambiente armazena cada vez mais dados. Estes dados incluem informações e registos relacionados com execuções de DAG anteriores, tarefas e outras operações do Airflow.

  • Se o tamanho da base de dados do Airflow for superior a 16 GB, não pode atualizar o seu ambiente para uma versão posterior.

  • Se o tamanho da base de dados do Airflow for superior a 20 GB, não é possível criar capturas instantâneas.

Execute o DAG de manutenção da base de dados com base numa programação

Pode usar o DAG de manutenção para remover o conteúdo da base de dados do Airflow do seu ambiente:

  • Execute o DAG de manutenção periodicamente para manter o tamanho da base de dados dentro dos limites. Recomendamos que execute este DAG diariamente para a maioria dos ambientes.

  • Escolha um período de retenção (DEFAULT_MAX_DB_ENTRY_AGE_IN_DAYS) que permita manter o tamanho da base de dados dentro dos limites. Recomendamos um período de 30 dias como ponto de partida para a maioria dos ambientes.

  • Se observar que a métrica de tamanho da base de dados de metadados do Airflow aumenta significativamente entre as execuções do DAG de manutenção, considere executar este DAG com mais frequência.

Por predefinição, este DAG remove entradas antigas das tabelas job, dag_run, task_instance, log, xcom, sla_miss, dags, task_reschedule, task_fail e import_error. No DAG, reveja a lista de tabelas e decida se as entradas antigas têm de ser removidas das mesmas. Em geral, a maior parte da poupança de espaço é proporcionada pela limpeza das tabelas log, task_instance, dag_run e xcom. Para excluir uma tabela da limpeza, modifique o DAG e comente os itens correspondentes na lista DATABASE_OBJECTS.

"""A maintenance workflow that you can deploy into Airflow to periodically clean
out the DagRun, TaskInstance, Log, XCom, Job DB and SlaMiss entries to avoid
having too much data in your Airflow MetaStore.

## Authors

The DAG is a fork of [teamclairvoyant repository.](
https://github.com/teamclairvoyant/airflow-maintenance-dags/tree/master/db-cleanup
)

## Usage

1. Update the global variables (SCHEDULE_INTERVAL, DAG_OWNER_NAME,
  ALERT_EMAIL_ADDRESSES and ENABLE_DELETE) in the DAG with the desired values

2. Modify the DATABASE_OBJECTS list to add/remove objects as needed. Each
   dictionary in the list features the following parameters:
    - airflow_db_model: Model imported from airflow.models corresponding to
      a table in the airflow metadata database
    - age_check_column: Column in the model/table to use for calculating max
      date of data deletion

3. Create and Set the following Variables in the Airflow Web Server
  (Admin -> Variables)
    - airflow_db_cleanup__max_db_entry_age_in_days - integer - Length to
      retain the log files if not already provided in the conf. If this is set
      to 30, the job will remove those files that are 30 days old or older.

4. Put the DAG in your gcs bucket.
"""
from datetime import timedelta
import logging
import os

import airflow
from airflow import settings
from airflow.models import (
    DAG,
    DagModel,
    DagRun,
    Log,
    SlaMiss,
    TaskInstance,
    Variable,
    XCom,
)
from airflow.operators.python import PythonOperator
from airflow.utils import timezone
from airflow.version import version as airflow_version

import dateutil.parser
from sqlalchemy import desc, text
from sqlalchemy.exc import ProgrammingError


def parse_airflow_version(version: str) -> tuple[int]:
    # TODO(developer): Update this function if you are using a version
    # with non-numerical characters such as "2.9.3rc1".
    COMPOSER_SUFFIX = "+composer"
    if version.endswith(COMPOSER_SUFFIX):
        airflow_version_without_suffix = version[:-len(COMPOSER_SUFFIX)]
    else:
        airflow_version_without_suffix = version
    airflow_version_str = airflow_version_without_suffix.split(".")

    return tuple([int(s) for s in airflow_version_str])


now = timezone.utcnow

# airflow-db-cleanup
DAG_ID = os.path.basename(__file__).replace(".pyc", "").replace(".py", "")

START_DATE = airflow.utils.dates.days_ago(1)

# How often to Run. @daily - Once a day at Midnight (UTC).
SCHEDULE_INTERVAL = "@daily"

# Who is listed as the owner of this DAG in the Airflow Web Server.
DAG_OWNER_NAME = "operations"

# List of email address to send email alerts to if this job fails.
ALERT_EMAIL_ADDRESSES = []

# Airflow version used by the environment as a tuple of integers.
# For example: (2, 9, 2)
#
# Value in `airflow_version` is in format e.g. "2.9.2+composer"
# It's converted to facilitate version comparison.
AIRFLOW_VERSION = parse_airflow_version(airflow_version)

# Length to retain the log files if not already provided in the configuration.
# If this is set to 30, the job will remove those files
# that are 30 days old or older.
DEFAULT_MAX_DB_ENTRY_AGE_IN_DAYS = int(
    Variable.get("airflow_db_cleanup__max_db_entry_age_in_days", 30)
)

# Prints the database entries which will be getting deleted;
# set to False to avoid printing large lists and slowdown the process.
PRINT_DELETES = False

# Whether the job should delete the DB entries or not.
# Included if you want to temporarily avoid deleting the DB entries.
ENABLE_DELETE = True

# List of all the objects that will be deleted.
# Comment out the DB objects you want to skip.
DATABASE_OBJECTS = [
    {
        "airflow_db_model": DagRun,
        "age_check_column": DagRun.execution_date,
        "keep_last": True,
        "keep_last_filters": [DagRun.external_trigger.is_(False)],
        "keep_last_group_by": DagRun.dag_id,
    },
    {
        "airflow_db_model": TaskInstance,
        "age_check_column": TaskInstance.start_date,
        "keep_last": False,
        "keep_last_filters": None,
        "keep_last_group_by": None,
    },
    {
        "airflow_db_model": Log,
        "age_check_column": Log.dttm,
        "keep_last": False,
        "keep_last_filters": None,
        "keep_last_group_by": None,
    },
    {
        "airflow_db_model": XCom,
        "age_check_column": XCom.execution_date
        if AIRFLOW_VERSION < (2, 2, 5)
        else XCom.timestamp,
        "keep_last": False,
        "keep_last_filters": None,
        "keep_last_group_by": None,
    },
    {
        "airflow_db_model": SlaMiss,
        "age_check_column": SlaMiss.execution_date,
        "keep_last": False,
        "keep_last_filters": None,
        "keep_last_group_by": None,
    },
    {
        "airflow_db_model": DagModel,
        "age_check_column": DagModel.last_parsed_time,
        "keep_last": False,
        "keep_last_filters": None,
        "keep_last_group_by": None,
    },
]

# Check for TaskReschedule model.
try:
    from airflow.models import TaskReschedule

    DATABASE_OBJECTS.append(
        {
            "airflow_db_model": TaskReschedule,
            "age_check_column": TaskReschedule.execution_date
            if AIRFLOW_VERSION < (2, 2, 0)
            else TaskReschedule.start_date,
            "keep_last": False,
            "keep_last_filters": None,
            "keep_last_group_by": None,
        }
    )

except Exception as e:
    logging.error(e)

# Check for TaskFail model.
try:
    from airflow.models import TaskFail

    DATABASE_OBJECTS.append(
        {
            "airflow_db_model": TaskFail,
            "age_check_column": TaskFail.start_date,
            "keep_last": False,
            "keep_last_filters": None,
            "keep_last_group_by": None,
        }
    )

except Exception as e:
    logging.error(e)

# Check for RenderedTaskInstanceFields model.
if AIRFLOW_VERSION < (2, 4, 0):
    try:
        from airflow.models import RenderedTaskInstanceFields

        DATABASE_OBJECTS.append(
            {
                "airflow_db_model": RenderedTaskInstanceFields,
                "age_check_column": RenderedTaskInstanceFields.execution_date,
                "keep_last": False,
                "keep_last_filters": None,
                "keep_last_group_by": None,
            }
        )

    except Exception as e:
        logging.error(e)

# Check for ImportError model.
try:
    from airflow.models import ImportError

    DATABASE_OBJECTS.append(
        {
            "airflow_db_model": ImportError,
            "age_check_column": ImportError.timestamp,
            "keep_last": False,
            "keep_last_filters": None,
            "keep_last_group_by": None,
            "do_not_delete_by_dag_id": True,
        }
    )

except Exception as e:
    logging.error(e)

if AIRFLOW_VERSION < (2, 6, 0):
    try:
        from airflow.jobs.base_job import BaseJob

        DATABASE_OBJECTS.append(
            {
                "airflow_db_model": BaseJob,
                "age_check_column": BaseJob.latest_heartbeat,
                "keep_last": False,
                "keep_last_filters": None,
                "keep_last_group_by": None,
            }
        )
    except Exception as e:
        logging.error(e)
else:
    try:
        from airflow.jobs.job import Job

        DATABASE_OBJECTS.append(
            {
                "airflow_db_model": Job,
                "age_check_column": Job.latest_heartbeat,
                "keep_last": False,
                "keep_last_filters": None,
                "keep_last_group_by": None,
            }
        )
    except Exception as e:
        logging.error(e)

default_args = {
    "owner": DAG_OWNER_NAME,
    "depends_on_past": False,
    "email": ALERT_EMAIL_ADDRESSES,
    "email_on_failure": True,
    "email_on_retry": False,
    "start_date": START_DATE,
    "retries": 1,
    "retry_delay": timedelta(minutes=1),
}

dag = DAG(
    DAG_ID,
    default_args=default_args,
    schedule_interval=SCHEDULE_INTERVAL,
    start_date=START_DATE,
)
if hasattr(dag, "doc_md"):
    dag.doc_md = __doc__
if hasattr(dag, "catchup"):
    dag.catchup = False


def print_configuration_function(**context):
    logging.info("Loading Configurations...")
    dag_run_conf = context.get("dag_run").conf
    logging.info("dag_run.conf: " + str(dag_run_conf))
    max_db_entry_age_in_days = None
    if dag_run_conf:
        max_db_entry_age_in_days = dag_run_conf.get(
            "maxDBEntryAgeInDays", None
        )
    logging.info("maxDBEntryAgeInDays from dag_run.conf: " + str(dag_run_conf))
    if max_db_entry_age_in_days is None or max_db_entry_age_in_days < 1:
        logging.info(
            "maxDBEntryAgeInDays conf variable isn't included or Variable "
            + "value is less than 1. Using Default '"
            + str(DEFAULT_MAX_DB_ENTRY_AGE_IN_DAYS)
            + "'"
        )
        max_db_entry_age_in_days = DEFAULT_MAX_DB_ENTRY_AGE_IN_DAYS
    max_date = now() + timedelta(-max_db_entry_age_in_days)
    logging.info("Finished Loading Configurations")
    logging.info("")

    logging.info("Configurations:")
    logging.info("max_db_entry_age_in_days: " + str(max_db_entry_age_in_days))
    logging.info("max_date:                 " + str(max_date))
    logging.info("enable_delete:            " + str(ENABLE_DELETE))
    logging.info("")

    logging.info("Setting max_execution_date to XCom for Downstream Processes")
    context["ti"].xcom_push(key="max_date", value=max_date.isoformat())


print_configuration = PythonOperator(
    task_id="print_configuration",
    python_callable=print_configuration_function,
    provide_context=True,
    dag=dag,
)


def build_query(
    session,
    airflow_db_model,
    age_check_column,
    max_date,
    dag_id=None
):
    """
    Build a database query to retrieve and filter Airflow data.

    Args:
        session: SQLAlchemy session object for database interaction.
        airflow_db_model: The Airflow model class to query (e.g., DagRun).
        age_check_column: The column representing the age of the data.
        max_date: The maximum allowed age for the data.
        dag_id (optional): The ID of the DAG to filter by. Defaults to None.

    Returns:
        SQLAlchemy query object: The constructed query.
    """
    query = session.query(airflow_db_model)

    logging.info("INITIAL QUERY : " + str(query))

    if dag_id:
        query = query.filter(airflow_db_model.dag_id == dag_id)

    if airflow_db_model == DagRun:
        newest_dagrun = (
            session
            .query(airflow_db_model)
            .filter(DagRun.external_trigger.is_(False))
            .filter(airflow_db_model.dag_id == dag_id)
            .order_by(desc(airflow_db_model.execution_date))
            .first()
        )
        logging.info("Newest dagrun: " + str(newest_dagrun))

        # For DagRuns we want to leave last *scheduled* DagRun
        # regardless of its age, otherwise Airflow will retrigger it
        if newest_dagrun is not None:
            query = (
                query
                .filter(airflow_db_model.id != newest_dagrun.id)
            )

    query = query.filter(age_check_column <= max_date)
    logging.info("FINAL QUERY: " + str(query))

    return query


def print_query(query, airflow_db_model, age_check_column):
    entries_to_delete = query.all()

    logging.info("Query: " + str(query))
    logging.info(
        "Process will be Deleting the following "
        + str(airflow_db_model.__name__)
        + "(s):"
    )
    for entry in entries_to_delete:
        date = str(entry.__dict__[str(age_check_column).split(".")[1]])
        logging.info("\tEntry: " + str(entry) + ", Date: " + date)

    logging.info(
        "Process will be Deleting "
        + str(len(entries_to_delete))
        + " "
        + str(airflow_db_model.__name__)
        + "(s)"
    )


def cleanup_function(**context):
    session = settings.Session()

    logging.info("Retrieving max_execution_date from XCom")
    max_date = context["ti"].xcom_pull(
        task_ids=print_configuration.task_id, key="max_date"
    )
    max_date = dateutil.parser.parse(max_date)  # stored as iso8601 str in xcom

    airflow_db_model = context["params"].get("airflow_db_model")
    state = context["params"].get("state")
    age_check_column = context["params"].get("age_check_column")
    keep_last = context["params"].get("keep_last")
    keep_last_filters = context["params"].get("keep_last_filters")
    keep_last_group_by = context["params"].get("keep_last_group_by")

    logging.info("Configurations:")
    logging.info("max_date:                 " + str(max_date))
    logging.info("enable_delete:            " + str(ENABLE_DELETE))
    logging.info("session:                  " + str(session))
    logging.info("airflow_db_model:         " + str(airflow_db_model))
    logging.info("state:                    " + str(state))
    logging.info("age_check_column:         " + str(age_check_column))
    logging.info("keep_last:                " + str(keep_last))
    logging.info("keep_last_filters:        " + str(keep_last_filters))
    logging.info("keep_last_group_by:       " + str(keep_last_group_by))

    logging.info("")

    logging.info("Running Cleanup Process...")

    try:
        if context["params"].get("do_not_delete_by_dag_id"):
            query = build_query(
                session=session,
                airflow_db_model=airflow_db_model,
                age_check_column=age_check_column,
                max_date=max_date,
            )
            if PRINT_DELETES:
                print_query(query, airflow_db_model, age_check_column)
            if ENABLE_DELETE:
                logging.info("Performing Delete...")
                query.delete(synchronize_session=False)
            session.commit()
        else:
            dags = session.query(airflow_db_model.dag_id).distinct()
            session.commit()

            list_dags = [str(list(dag)[0]) for dag in dags] + [None]
            for dag_id in list_dags:
                query = build_query(
                    session=session,
                    airflow_db_model=airflow_db_model,
                    age_check_column=age_check_column,
                    max_date=max_date,
                    dag_id=dag_id,
                )
                if PRINT_DELETES:
                    print_query(query, airflow_db_model, age_check_column)
                if ENABLE_DELETE:
                    logging.info("Performing Delete...")
                    query.delete(synchronize_session=False)
                session.commit()

        if not ENABLE_DELETE:
            logging.warning(
                "You've opted to skip deleting the db entries. "
                "Set ENABLE_DELETE to True to delete entries!!!"
            )

        logging.info("Finished Running Cleanup Process")

    except ProgrammingError as e:
        logging.error(e)
        logging.error(
            str(airflow_db_model) +
            " is not present in the metadata." +
            "Skipping..."
        )

    finally:
        session.close()


def cleanup_sessions():
    session = settings.Session()

    try:
        logging.info("Deleting sessions...")
        count_statement = (
            "SELECT COUNT(*) AS cnt FROM session " +
            "WHERE expiry < now()::timestamp(0);"
        )
        before = session.execute(text(count_statement)).one_or_none()["cnt"]
        session.execute(
            text(
                "DELETE FROM session WHERE expiry < now()::timestamp(0);"
            )
        )
        after = session.execute(text(count_statement)).one_or_none()["cnt"]
        logging.info("Deleted %s expired sessions.", (before - after))
    except Exception as err:
        logging.exception(err)

    session.commit()
    session.close()


def analyze_db():
    session = settings.Session()
    session.execute("ANALYZE")
    session.commit()
    session.close()


analyze_op = PythonOperator(
    task_id="analyze_query",
    python_callable=analyze_db,
    provide_context=True,
    dag=dag
)

cleanup_session_op = PythonOperator(
    task_id="cleanup_sessions",
    python_callable=cleanup_sessions,
    provide_context=True,
    dag=dag,
)

cleanup_session_op.set_downstream(analyze_op)

for db_object in DATABASE_OBJECTS:
    cleanup_op = PythonOperator(
        task_id="cleanup_" + str(db_object["airflow_db_model"].__name__),
        python_callable=cleanup_function,
        params=db_object,
        provide_context=True,
        dag=dag,
    )

    print_configuration.set_downstream(cleanup_op)
    cleanup_op.set_downstream(analyze_op)

Mantenha o desempenho da base de dados

  • Os problemas de desempenho da base de dados do Airflow podem levar a problemas gerais de execução do DAG. Observe as estatísticas de utilização de memória e CPU da base de dados. Se a utilização da CPU e da memória se aproximar dos limites, a base de dados está sobrecarregada e requer o ajuste de escala. A quantidade de recursos disponíveis para a base de dados do Airflow é controlada pela propriedade de tamanho do ambiente do seu ambiente. Para aumentar a escala da base de dados, altere o tamanho do ambiente para um nível superior. Aumentar o tamanho do ambiente aumenta os custos do seu ambiente.

  • Se usar o mecanismo XCom para transferir ficheiros, certifique-se de que o usa de acordo com as diretrizes do Airflow. A transferência de ficheiros grandes ou de um grande número de ficheiros através do XCom afeta o desempenho da base de dados do Airflow e pode originar falhas ao carregar instantâneos ou atualizar o seu ambiente. Considere usar alternativas, como o Cloud Storage, para transferir grandes volumes de dados.

Remova entradas de DAGs não usados

Pode remover entradas da base de dados para DAGs não usados removendo DAGs da IU do Airflow.

O que se segue?