Como usar o Bigtable a partir do Cloud Functions

Mantenha tudo organizado com as coleções Salve e categorize o conteúdo com base nas suas preferências.

Use o Bigtable em um Cloud Functions.

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

Go

Para saber como instalar e usar a biblioteca de cliente do Bigtable, consulte Bibliotecas de cliente do Bigtable.


// Package bigtable contains an example of using Bigtable from a Cloud Function.
package bigtable

import (
	"context"
	"fmt"
	"log"
	"net/http"
	"sync"

	"cloud.google.com/go/bigtable"
)

// client is a global Bigtable client, to avoid initializing a new client for
// every request.
var client *bigtable.Client
var clientOnce sync.Once

// BigtableRead is an example of reading Bigtable from a Cloud Function.
func BigtableRead(w http.ResponseWriter, r *http.Request) {
	clientOnce.Do(func() {
		// Declare a separate err variable to avoid shadowing client.
		var err error
		client, err = bigtable.NewClient(context.Background(), r.Header.Get("projectID"), r.Header.Get("instanceId"))
		if err != nil {
			http.Error(w, "Error initializing client", http.StatusInternalServerError)
			log.Printf("bigtable.NewClient: %v", err)
			return
		}
	})

	tbl := client.Open(r.Header.Get("tableID"))
	err := tbl.ReadRows(r.Context(), bigtable.PrefixRange("phone#"),
		func(row bigtable.Row) bool {
			osBuild := ""
			for _, col := range row["stats_summary"] {
				if col.Column == "stats_summary:os_build" {
					osBuild = string(col.Value)
				}
			}

			fmt.Fprintf(w, "Rowkey: %s, os_build:  %s\n", row.Key(), osBuild)
			return true
		})

	if err != nil {
		http.Error(w, "Error reading rows", http.StatusInternalServerError)
		log.Printf("tbl.ReadRows(): %v", err)
	}
}

Node.js

Para saber como instalar e usar a biblioteca de cliente do Bigtable, consulte Bibliotecas de cliente do Bigtable.

// Imports the Google Cloud client library
const {Bigtable} = require('@google-cloud/bigtable');

// Instantiates a client
const bigtable = new Bigtable();

exports.readRows = async (req, res) => {
  // Gets a reference to a Cloud Bigtable instance and database
  const instance = bigtable.instance(req.body.instanceId);
  const table = instance.table(req.body.tableId);

  // Execute the query
  try {
    const prefix = 'phone#';
    const rows = [];
    await table
      .createReadStream({
        prefix,
      })
      .on('error', err => {
        res.send(`Error querying Bigtable: ${err}`);
        res.status(500).end();
      })
      .on('data', row => {
        rows.push(
          `rowkey: ${row.id}, ` +
            `os_build: ${row.data['stats_summary']['os_build'][0].value}\n`
        );
      })
      .on('end', () => {
        rows.forEach(r => res.write(r));
        res.status(200).end();
      });
  } catch (err) {
    res.send(`Error querying Bigtable: ${err}`);
    res.status(500).end();
  }
};

Python

Para saber como instalar e usar a biblioteca de cliente do Bigtable, consulte Bibliotecas de cliente do Bigtable.

from google.cloud import bigtable
from google.cloud.bigtable.row_set import RowSet

client = bigtable.Client()

def bigtable_read_data(request):
    instance = client.instance(request.headers.get("instance_id"))
    table = instance.table(request.headers.get("table_id"))

    prefix = 'phone#'
    end_key = prefix[:-1] + chr(ord(prefix[-1]) + 1)

    outputs = []
    row_set = RowSet()
    row_set.add_row_range_from_keys(prefix.encode("utf-8"),
                                    end_key.encode("utf-8"))

    rows = table.read_rows(row_set=row_set)
    for row in rows:
        output = 'Rowkey: {}, os_build: {}'.format(
            row.row_key.decode('utf-8'),
            row.cells["stats_summary"]["os_build".encode('utf-8')][0]
            .value.decode('utf-8'))
        outputs.append(output)

    return '\n'.join(outputs)

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte o navegador de exemplos do Google Cloud.