BigQuery 입력으로 일괄 예측 가져오기

BigQuery 테이블을 입력으로 사용하여 일괄 예측 작업을 만듭니다.

이 코드 샘플이 포함된 문서 페이지

컨텍스트에서 사용된 코드 샘플을 보려면 다음 문서를 참조하세요.

코드 샘플

자바

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1beta1.BatchPredictInputConfig;
import com.google.cloud.automl.v1beta1.BatchPredictOutputConfig;
import com.google.cloud.automl.v1beta1.BatchPredictRequest;
import com.google.cloud.automl.v1beta1.BatchPredictResult;
import com.google.cloud.automl.v1beta1.BigQueryDestination;
import com.google.cloud.automl.v1beta1.BigQuerySource;
import com.google.cloud.automl.v1beta1.ModelName;
import com.google.cloud.automl.v1beta1.OperationMetadata;
import com.google.cloud.automl.v1beta1.PredictionServiceClient;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class TablesBatchPredictBigQuery {

  static void batchPredict() throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    String inputUri = "bq://YOUR_PROJECT_ID.bqDatasetID.bqTableId";
    String outputUri = "bq://YOUR_PROJECT_ID";
    batchPredict(projectId, modelId, inputUri, outputUri);
  }

  static void batchPredict(String projectId, String modelId, String inputUri, String outputUri)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient client = PredictionServiceClient.create()) {
      // Get the full path of the model.
      ModelName name = ModelName.of(projectId, "us-central1", modelId);

      // Configure the source of the file from BigQuery
      BigQuerySource bigQuerySource = BigQuerySource.newBuilder().setInputUri(inputUri).build();
      BatchPredictInputConfig inputConfig =
          BatchPredictInputConfig.newBuilder().setBigquerySource(bigQuerySource).build();

      // Configure where to store the output in BigQuery
      BigQueryDestination bigQueryDestination =
          BigQueryDestination.newBuilder().setOutputUri(outputUri).build();
      BatchPredictOutputConfig outputConfig =
          BatchPredictOutputConfig.newBuilder().setBigqueryDestination(bigQueryDestination).build();

      // Build the request that will be sent to the API
      BatchPredictRequest request =
          BatchPredictRequest.newBuilder()
              .setName(name.toString())
              .setInputConfig(inputConfig)
              .setOutputConfig(outputConfig)
              .build();

      // Start an asynchronous request
      OperationFuture<BatchPredictResult, OperationMetadata> future =
          client.batchPredictAsync(request);

      System.out.println("Waiting for operation to complete...");
      BatchPredictResult response = future.get();
      System.out.println("Batch Prediction results saved to BigQuery.");
    }
  }
}

Node.js


/**
 * Demonstrates using the AutoML client to request prediction from
 * automl tables using bigQuery.
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = '[PROJECT_ID]' e.g., "my-gcloud-project";
// const computeRegion = '[REGION_NAME]' e.g., "us-central1";
// const modelId = '[MODEL_ID]' e.g., "TBL4704590352927948800";
// const inputUri = '[BIGQUERY_PATH]'
// e.g., "bq://<project_id>.<dataset_id>.<table_id>",
// `The Big Query URI containing the inputs`;
// const outputUri = '[BIGQUERY_PATH]' e.g., "bq://<project_id>",
// `The destination Big Query URI for storing outputs`;

const automl = require('@google-cloud/automl');

// Create client for prediction service.
const automlClient = new automl.v1beta1.PredictionServiceClient();

// Get the full path of the model.
const modelFullId = automlClient.modelPath(projectId, computeRegion, modelId);

async function batchPredict() {
  // Construct request
  // Get the Big Query input URI.
  const inputConfig = {
    bigquerySource: {
      inputUri: inputUri,
    },
  };

  // Get the Big Query output URI.
  const outputConfig = {
    bigqueryDestination: {
      outputUri: outputUri,
    },
  };

  const [, operation] = await automlClient.batchPredict({
    name: modelFullId,
    inputConfig: inputConfig,
    outputConfig: outputConfig,
  });

  // Get the latest state of long-running operation.
  console.log(`Operation name: ${operation.name}`);
}

batchPredict();

Python

# TODO(developer): Uncomment and set the following variables
# project_id = 'PROJECT_ID_HERE'
# compute_region = 'COMPUTE_REGION_HERE'
# model_display_name = 'MODEL_DISPLAY_NAME_HERE'
# bq_input_uri = 'bq://my-project.my-dataset.my-table'
# bq_output_uri = 'bq://my-project'
# params = {}

from google.cloud import automl_v1beta1 as automl

client = automl.TablesClient(project=project_id, region=compute_region)

# Query model
response = client.batch_predict(bigquery_input_uri=bq_input_uri,
                                bigquery_output_uri=bq_output_uri,
                                model_display_name=model_display_name,
                                params=params)
print("Making batch prediction... ")
# `response` is a async operation descriptor,
# you can register a callback for the operation to complete via `add_done_callback`:
# def callback(operation_future):
#   result = operation_future.result()
# response.add_done_callback(callback)
#
# or block the thread polling for the operation's results:
response.result()
# AutoML puts predictions in a newly generated dataset with a name by a mask "prediction_" + model_id + "_" + timestamp
# here's how to get the dataset name:
dataset_name = response.metadata.batch_predict_details.output_info.bigquery_output_dataset

print("Batch prediction complete.\nResults are in '{}' dataset.\n{}".format(
    dataset_name, response.metadata))

다음 단계

다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저를 참조하세요.